K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Đặt độ dài cạnh AB = x; điều kiện: x > 0

Theo bài ra theo điều (1) ta có: BC = x + 2a (3)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

17 tháng 9 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

11 tháng 1 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

25 tháng 6 2019

Ta có: 

\(\frac{1}{AB}+\frac{1}{AC}+\frac{1}{AH}=1\)

\(\Leftrightarrow\frac{1}{AB^2}+\frac{1}{AC^2}+\frac{1}{AH^2}+\frac{2}{AB.AC}+\frac{2}{AC.AH}+\frac{2}{AB.AH}=1\)

\(\Leftrightarrow\frac{2}{AH^2}+\frac{2}{AH.BC}+\frac{2}{AC.AH}+\frac{2}{AB.AH}=1\)(Do \(\hept{\begin{cases}\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\\AB.AC=AH.BC\end{cases}}\)(Hệ thức lượng)

\(\Leftrightarrow\frac{2}{AH}\left(\frac{1}{AH}+\frac{1}{BC}+\frac{1}{AB}+\frac{1}{AC}\right)=1\)

\(\Leftrightarrow\frac{2}{AH}\left(1+\frac{1}{BC}\right)=1\)(Do \(\frac{1}{AB}+\frac{1}{AC}+\frac{1}{AH}=1\))

\(\Leftrightarrow\frac{BC+1}{BC}=\frac{AH}{2}\)

\(\Leftrightarrow2\left(BC+1\right)=AH.BC\)

\(\Leftrightarrow4BC+4=2AB.AC\)(Do AH.BC = AB.AC)

Kết hợp với Py-ta-go trong tam giác vuông ABC: \(BC^2=AB^2+AC^2\)

\(\Rightarrow BC^2+4BC+4=AB^2+2AB.AC+AC^2\)

\(\Leftrightarrow\left(BC+2\right)^2=\left(AB+AC\right)^2\)

\(\Leftrightarrow AB+AC=BC+2\)(Do \(\hept{\begin{cases}BC+2>0\\AB+AC>0\end{cases}}\))

Mà 3 cạnh AB,AC,BC là 3 cạnh nguyên lớn hơn 0

=> Chỉ có 2 cặp (AB,AC,BC) thỏa mãn: \(\left(3,4,5\right),\left(4,3,5\right)\)

25 tháng 6 2019

lớp 7 lạc trôi kaka

11 tháng 2 2016

75% = 3/4

Tổng độ dài AB và AC : 3+4 = 7 (phần)

Giá trị 1 phần: 120 : (3+4+5) = 10 (cm)

Cạnh AC: 10 x 3 = 30 (cm)

Cạnh AB: 10 x 4 = 40 (cm)

Cạnh BC : 10 x 5 = 50 (cm)

Diện tích tam giác ABC: (30 x 40): 2  = 600 (cm2)

Chiều cao tương ứng với cạnh BC: 600 x 2 : 50 = 24 (cm)

11 tháng 2 2016

75% = 3/4

Tổng độ dài AB và AC : 3+4 = 7 (phần)

Giá trị 1 phần: 120 : (3+4+5) = 10 (cm)

Cạnh AC: 10 x 3 = 30 (cm)

Cạnh AB: 10 x 4 = 40 (cm)

Cạnh BC : 10 x 5 = 50 (cm)

Diện tích tam giác ABC: 30 x 40 = 1200 (cm2)

Chiều cao tương ứng với cạnh BC: 1200 x 2 : 50 = 48 (cm)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=12^2+16^2=400\)

hay BC=20(cm)

Vậy: BC=20cm

Bài 3: 

Gọi độ dài hai cạnh góc vuông lần lượt là a,b

Theo đề, ta có: a/8=b/15

Đặt a/8=b/15=k

=>a=8k; b=15k

Ta có: \(a^2+b^2=51^2\)

\(\Leftrightarrow289k^2=2601\)

=>k=3

=>a=24; b=45

Bài 6: 

Xét ΔABC có \(10^2=8^2+6^2\)

nên ΔABC vuông tại A

22 tháng 1 2022

Refer:

2, 

Ta có:AH là đường cao ΔABC

⇒AH ⊥ BC tại H

⇒∠AHB=∠AHC=90°

⇒ΔAHB và ΔAHC là Δvuông H

Xét ΔAHB vuông H có:

     AH² + HB²=AB²(Py)

⇔24² + HB²=25²

⇔         HB²=25² - 24²

⇔         HB²=49

⇒         HB=7(đvđd)

Chứng minh tương tự:HC=10(đvđd)

Ta có:BC=BH + CH=7 + 10=17(đvđd)

Bài 10:

a: AH=24cm