Cho đồ thị vận tốc – thời gian của một xe chuyển động trên đường thẳng. Gia tốc của xe trong khoảng thời gian (5 -> 10s ) là:
A. 0,2m/ s 2
B. 0,4m/ s 2
C. 0,6m/ s 2
D. 0,8m/ s 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chọn hệ quy chiếu: gốc tọa độ trùng A
chiều dượng của Ox từ A đến B
gốc thời gian khi ô tô đi qua điểm A ( lúc 8h)
a) phương trình chuyển động của 2 xe
x1=10t - 0,1t^2
x2= 560 - 0,2t^2
2 xe gặp nhau <=> x1=x2
<=> t=40s
x=x1=x2= 240m
b) phương trình vận tốc của 2 xe: (v=v0 + at)
v1=10 - 0,2 .40 =2 m/s
v2= 0+ 0,4 .40 = 16 m/s
Chọn gốc thời gian là lúc 8h, gốc tọa độ tại A, chiều dương từ A đến B
ô tô 1: xo1 = 0; vo1 = 10m/s; a1 = -0,2m/s2
ô tô 2: xo1 = 560; vo1 = 0; a1 = 0,4m/s2
Giải
a) Phương trình chuyển động của hai xe:
x1 = x01 + v01t + 0,5a1t2 = 10t – 0,1t2 (1)
x2 = x02 + v02t + 0,5a2t2 = 560 – 0,2t2 (2)
b) Khi hai xe gặp nhau:
x1 = x2 => 10t – 0,1t2 = 560 – 0,2t2 => t = 40 s
=> x1 = x2 = 240 m.
c) Thời gian để xe một dừng lại:
v1 = vo1 + a1.t => t = 50 s;
a,ta có gốc A chiều + AB => X1=Xo+Vot+1/2at^2 vs Xo=0; Vo=10 ;a=-0.2(chậm dần)
=>X1=10t-0.1t^2
xe2 ở B có Xo=560 ,Vo=0 ,a=0.4 => X2=560-0.2t^2 ( xe 2 đi ngược lại B>A )
b,2 xe gặp nhau khi X1=X2 <=> 10t-0.1t^2=560-0.2t^2 <=> t=40(n) t=-140(l)
S1=Vot+1/2at^2=10*40 -0.1*40^2=240
S2=Vot+1/2at^2=0.2*40^2=320
c,tại thời điểm 2 xe gặp nhau t=40 => v xe1 lúc gặp nhau ;V1=Vo-at=10-0.2*40=2
V2=Vo +at=0.4*40=16
vẽ trục oy là v; ox là t trên oy lấy các điểm 2,10,16 trên ox lấy điểm 40 . vẽ đt x1 từ 10 đến giao điểm của 2 vs 40 . vẽ x2 từ 0 đến giao 16 vs 40
+ Trong khoảng thời gian từ 0 đến t 1 thuộc chuyển động nhanh dần đều (vì vận tốc tăng)
+ Trong khoảng thời gian từ t 1 đến t 2 thuộc chuyển động thẳng đều (vì vận tốc không đổi)
+ Trong khoảng thời gian từ t 2 đến t 3 thuộc chuyển động chậm dần đều (vì vận tốc giảm) => Chọn C
Chọn C.
Trong chuyển động thẳng chậm dần đều, đồ thị vận tốc thời gian là đường thẳng chéo xuống (v giảm đều theo t).
chọn gốc tọa độ tại điểm A, chiều dương từ A-B, gốc thời gian lúc 8h
a)x1=x0+v.t+a.t2.0,5=t-0,1t2
x2=x0+v.t+a.t2.0,5=560-0,2t2
hai xe gặp nhau \(\Rightarrow\)x1=x2\(\Rightarrow\)t=70s
vậy hai xe gặp nhau sau 70s
b) hai xe gặp nhau lúc 8h 70s
c) hai xe gặp nhau lúc 8h 70s
Bài 1
Chọn trục Ox trùng với quỹ đạo chuyển động , gốc tọa độ O ở A , chiều dương là chiều chuyển động của xe ô tô . Mốc thời gian t0=0 lúc 7h
a)
Với xe ô tô ở A \(\left\{{}\begin{matrix}ở.t0=0.có.v01=5\left(\dfrac{m}{s}\right)\\ở.t1=10s.có.v1=10\left(\dfrac{m}{s}\right)\end{matrix}\right.\) có x01 =0 ( do A trùng O)
=> a = \(\dfrac{v1-v01}{t1-t0}=\dfrac{10-5}{10-0}=0,5\left(\dfrac{m}{s^2}\right)\)
=> PTCĐ : x1= x01 + v0(t-t0) + 1/2.a.(t-t0)^2 <=> x1= 0 + 5(t-0)+1/2.0,5.(t-0)^2
<=> x1 = 5t + 0,25.t^2(t\(\ge0\))
Với xe máy ở B lúc t0 = 0 có v = 36km/h=10m/s , x02 = 100m
=> PtCĐ : x2 = x02 + v2(t-t0) <=> x2 = 100 + 10t (t\(\ge0\))
b) 2 xe gặp nhau thì
x1 = x2
<=> 5t + 0,25t^2 = 100+10t <=> 0,25t^2 -5t-100=0(t\(\ge0\))
=> \(\left\{{}\begin{matrix}t\approx32,36\left(s\right)\left(nhận\right)\\t\approx-12,36\left(s\right)\left(loại\right)\end{matrix}\right.\)
thay t = 32,36 vào x2(x1=x2) ta được : x1 = 100+10.t = 100 + 10.32,36 = 432,6(m)
Vậy 2 xe gặp nhau sau 32,36 giây và cách A 432,6 m
bài 2 tương tự thôi , bạn tự làm nha , câu b có hơi khác , bạn muốn tính v mỗi xe thì thay t lúc gặp nhau vào công thức tính vận tốc v = v0 + at , quãng đường thì cũng tương tự như thế , thay t, v0 của mỗi xe , a của mỗi xe vào công thức s = v0.t+1/2a.t^2 là ra :v
Đáp án D