1+3+5+...+(2n+1)=625
ai giải mình cũng tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số các số hạng của tổng 1+3+5+7+...+(2n+1) là:
\(\left[\left(2n+1\right)-1\right]:2+1\)
\(=2n:2+1\)
\(=n+1\)
Ta có \(1+3+5+...+\left(2n+1\right)\)
\(=\left[1+\left(2n+1\right)\right].2n:2\)
\(=\left(2n+2\right).\left(2n:2\right)\)
\(=\left(2n+2\right).n\)
\(=2n^2+n\)
Mik nhầm nha, đoạn tiếp theo đây
Ta có : (1+2n+1).(n+1):2
= (n+1). (2n+2) : 2
= (n+1) . (n+1).2 : 2
= (n+1).(n+1)
= (n+1)2
Tổng S có: (4n+1)-(2n+1)+1=2n+1 hạng tử; hạng tử ở giữa là \(\frac{1}{3n+1}\)
Trừ hạng tử ở giữa, ta ghép tổng S thành n cặp, mỗi cặp 2 hạng tử cách đều hạng tử ở giữa. Mỗi cặp bằng
\(\frac{1}{3n+1-k}+\frac{1}{3n+1+k}=\frac{6n+2}{\left(3n+1\right)^2-k^2}>\frac{2\left(3n+1\right)}{\left(3n+1\right)^2}=\frac{2}{3n+1}\)
Vậy \(S=\frac{2}{3n+1}\cdot n+\frac{1}{3n+1}=\frac{2n+1}{3n+1}>\frac{2n}{3n}=\frac{2}{3}\)
Để CM S<1 ta làm trội S bằng cách thay mỗi hạng tử của S bời hạng tử có GTLN là \(\frac{1}{2n+1}\)
\(S< \frac{1}{2n+1}\left(2n+1\right)=1\)
vậy \(\frac{2}{3}< S< 1\)
Đặt A = 1 +3 +5 +...+(2n-1)
Số số hạng của A là : [(2n-1)-1]:2 +1 = n
Tổng A = [(2n-1)+1]xn:2=n2
=> n2=169
=>n2=132
=>n=13
\(2n+1⋮n-3\)
Mà \(n-3⋮n-3\)
\(\Leftrightarrow\hept{\begin{cases}2n+1⋮n-3\\2n-6⋮n-3\end{cases}}\)
\(\Leftrightarrow7⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(7\right)\)
Suy ra :
+) \(n-3=1\Leftrightarrow n=4\)
+) \(n-3=7\Leftrightarrow n=10\)
+) \(n-3=-1\Leftrightarrow n=2\)
+) \(n-3=-7\Leftrightarrow n=-4\)
Vì 2n + 1 chia hết cho 2n - 1
=> (2n - 1) + 2 chia hết cho 2n - 1
Mà 2n - 1 chia hết cho 2n - 1
=> 2 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư(2) = {-1;1-2;2}
Ta có :
2n - 1 | -2 | -1 | 1 | 2 |
2n | -1 | 0 | 2 | 3 |
n | -1/2(loại) | 0 (t/m) | 1 (t/m) | 3/2 (loại) |
Vì 2n + 1 chia hết cho 2n - 1
=> (2n - 1) + 2 chia hết cho 2n - 1
Mà 2n - 1 chia hết cho 2n - 1
=> 2 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư(2) = {-1;1-2;2}
Ta có :
2n - 1 | -2 | -1 | 1 | 2 |
2n | -1 | 0 | 2 | 3 |
n | -1/2(loại) | 0 (t/m) | 1 (t/m) | 3/2 (loại) |
Ta có cba=(n-2)^2=(n-2)(n-2)=n(n-2)-2(n-2)=n2-2n-2n+4=n2-4n+4
=>abc-cba=n2-1-n2+4n-4=(n2-n2)+4n-(1+4)=4n+5
abc-cba=100a+10b+c-100c-10b-a=99a-99c=99(a-c)
=>4n-5 chia hết cho 99
ta có 99<abc<1000
99<n2-1<1000
100<n^2<1001
10<n<31
35<4n-5<119
Mà 4n-5 chia hết cho 99
=>4n-5=99
=>n=26
=>abc=26^2-1=675
1 + 3 + 5 + .... + (2n + 1) = 625
Số các số hạng là
(2n + 1 - 1)/2 + 1 = n +1
Tổng là:
(2n + 1 + 1). (n + 1)/2 = 2(n + 1).(n + 1)/2 = 625
( n + 1)2 = 625 = 252
n + 1 = 25
n = 25 - 1= 24