Biết rằng tồn tại hai giá trị của tham số m để phương trình sau có bốn nghiệm phân biệt lập thành một cấp số cộng: x4 – 10x2 + 2m2 + 7m = 0, tính tổng lập phương của hai giá trị đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Đặt t = x2.
Khi đó ta có phương trình: t2 – 2(m + 1)t + 2m + 1 = 0
Phương trình đã cho có nghiệm phân biệt khi và chỉ khi phương trình (*) có 2 nghiệm dương phân biệt
+ Với điều kiện trên thì phương trình (*) có hai nghiệm dương phân biệt là t1; t2.
Khi đó phương trình đã cho có bốn nghiệm phân biệt là .
Bốn nghiệm này lập thành một cấp số cộng khi
Theo định lý Vi-ét ta có: t1 + t2 = 2(m + 1) ; t1.t2 = 2m + 1.
Suy ra ta có hệ phương trình
Chỉ có m = 4 thỏa mãn điều kiện .
Do đó 43 = 64.
Đặt t = x2.
Khi đó ta có phương trình: t2 – 10t + 2m2 + 7m = 0.
Phương trình đã cho có nghiệm phân biệt khi và chỉ khi phương trình (*) có 2 nghiệm dương phân biệt
+ Với điều kiện trên thì phương trình (*) có hai nghiệm dương phân biệt là t1, t2(t1 < t2).
Khi đó phương trình đã cho có bốn nghiệm phân biệt là :
Bốn nghiệm này lập thành một cấp số cộng khi
Theo định lý Vi-ét ta có: t1 + t2 = 10 ; t1.t2 = 2m2 + 7m.
⇒ Ta có hệ phương trình:
Cả hai giá trị này đều thỏa mãn điều kiện nên đều có thể nhận được.
Do đó:
Chọn D
+ Điều kiện cần: Giả sử phương trình đã cho có ba nghiệm phân biệt x 1 , x 2 , x 3 lập thành một cấp số nhân.
Theo định lý Vi-ét, ta có x 1 . x 2 . x 3 = 8
Theo tính chất của cấp số nhân, ta có x 1 x 3 = x 2 2 . Suy ra ta có x 2 3 = 8 ⇔ x 2 = 2.
Với nghiệm x=2, ta có m 2 + 6 m − 7 = 0 ⇔ m = 1 m = − 7
+ Điều kiện đủ: Với m= 1 hoặc m = -7 thì m 2 + 6 m = 7 nên ta có phương trình: x 3 − 7 x 2 + 14 x − 8 = 0.
Giải phương trình này, ta được các nghiệm là 1,2,4 Hiển nhiên ba nghiệm này lập thành một cấp số nhân với công bôị q=2
Vậy m= 1 và m= -7 là các giá trị cần tìm.
Đáp án D
Đặt t = x 2 , t ≥ 0 . Ta được phương trình: t 2 − 20 t + m − 1 2 = 0 (2).
Phương trình (1) có bốn nghiệm phân biệt khi và chỉ khi phương trình (2) có hai nghiệm dương t 1 , t 2 phân biệt 0 < t 1 < t 2 .
⇔ Δ ' > 0 S > 0 P > 0 ⇔ − m 2 + 2 m + 99 > 0 20 > 0 m − 1 2 > 0 ⇔ − 9 < m < 11 m ≠ 1 ∗ .
Bốn nghiệm của phương trình (1) lập thành cấp số cộng là: − t 2 , − t 1 , t 1 , t 2 .
Ta có: − t 2 + t 1 = − 2 t 1 − t 1 + t 2 = 2 t 1 ⇔ 3 t 1 = t 2 ⇔ t 2 = 9 t 1 .
Theo định lý Viet, ta có: t 2 = 9 t 1 t 1 + t 2 = 20 t 1 . t 2 = m − 1 2 ⇔ t 1 = 2 t 2 = 18 m − 1 2 = 36
Suy ra: m = 7 hoặc m = - 5 (thỏa (∗)).
Vậy tổng tất cả các giá trị m thỏa yêu cầu bài toán là: 7−5=2.
Chọn C.
Đặt t = x2.
Khi đó ta có phương trình: t2 – 10t + 2m2 + 7m = 0.
Phương trình đã cho có nghiệm phân biệt khi và chỉ khi phương trình (*) có 2 nghiệm dương phân biệt
+ Với điều kiện trên thì phương trình(*) có hai nghiệm dương phân biệt là t1, t2(t1 < t2).
Khi đó phương trình đã cho có bốn nghiệm phân biệt là
Bốn nghiệm này lập thành một cấp số cộng khi
Theo định lý Vi-ét ta có: t1 + t2 = 10 ; t1.t2 = 2m2 + 7m.
Suy ra ta có hệ phương trình
Cả hai giá trị này đều thỏa mãn điều kiện nên đều có thể nhận được.
Do đó .