Tìm n để ( 3 . n + 4 ) chia hết cho ( n - 1 )
biết n là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B1:\)-Ta xát tổng của M
48 chia hết cho 4
20 chia hết cho 4
Ta áp dụng công thức a chia hết cho d;b chia hết cho d;c chia hết cho d
=>a+b+c chia hết cho d
=>Để m chia hết cho 4 thì a cũng phải chia hết cho 4
Để M không chia hết cho 4 thì a phải không chia hết cho 4
\(B2:\)1x2x3x4x5x...x20
=(5x20x4)x1x2x3x...
=400x1x2x3x...
Ta có 400 chia hết cho 400
Ta áp dụng công thức
a chia hết cho b thì a nhân với bất kì số nào cũng chia hết cho b
=>A chia hết cho 400
\(B3:\)Ta có n+10 chia hết cho n+1;n+1 chia hết cho n+1
=>(n+10)-(n+1) chia hết cho n+1
a,(n+10)-(n+1)=9
=>9 là bội của n+1
Ư(9)=(1;-1;3;-3;9;-9)
n+1 | 1 | -1 | -3 | 3 | 9 | -9 | |
n | 0 | -2 | -4 | 2 | 8 | -10 |
=.n=(0;-2;-4;2;8;-10
3n + 8 chia hết cho n + 2
3n + 6 + 2 chia hết cho n + 2
Mà 3n + 6 chia hết cho n + 2
Nên 2 chia hết cho n + 2
n + 2 thuộc Ư(2) = {-2 ; - 1; 1 ; 2}
Mà n là số tự nhiên nên n = 0
3n + 4 chia hết cho n
Mà 3 n chia hết cho n
Nên 4 chia hết cho n
=> n thuộc Ư(4) = {1;2;4}
n khác 1 => n thuộc {2;4}
Câu 1: Làm lại nha:))
Ta có: 3n + 8 chia hết cho n + 2
Mà: n + 2 chia hết cho n + 2
=> 3( n + 2 ) chia hết cho n + 2
=> 3n + 6 chia hết cho n + 2
Từ đó => ( 3n + 8 ) - ( 3n + 6 ) chia hết cho n + 2
=> 2 chia hết cho n + 2
=> n + 2 \(\in\) Ư( 2 )
=> n + 2 = 2
=> n = 0
a,ta có :n+4chia hết n+3
n+3+1 chia hết n+3
mà n+3 chia hết n+3
suy ra 1 chia hết n+3
n+3 thuộc{1,-1}
n+3=1 n+3= -1
n =1-3 n = -1 -3
n = -2(loại ) n = -4
vậy n thuộc tập rỗng
Bạn đăng từng bài 1 thui chứ nếu bạn đăng nhìu như thế này thì khó có ai có thể trả lời hết được bạn ạ
1 x n + 4 chia hết cho n + 1
=> n + 4 chia hết cho n + 1
(n + 1) + 3 chia hết cho n+1
=> 3 chia hết cho n + 1
Ư(3) = {+-1;+-3}
n + 1 = -1
=> n = -2
n + 1 = 1
=> n = 0
n + 1 = -3
=> n = -4
n + 1 = 4
=> n = 3
Vì n là số tự nhiên => n \(\in\){0;3}
n+4 chia hết n+1
n+4-(n+1) chia hết n+1
3 chia hết n+1
n+1 | 1 | -1 | 3 | -3 |
n | 0 | -2 | 2 | -4 |
n^2+4 chia hết n+2
n^2+2n-2n-4+6 chia hết n+2
n(n+2)-2(n+2)+6 chia hết n+2
(n-2)(n+2)+6 chia hết n+2
=> 6 chia hết n+2
n+2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | -1 | -3 | 0 | -4 | 1 | -5 | 4 | -8 |
\(3n+4⋮n-1\\ \Rightarrow3\left(n-1\right)+7⋮n-1\)
Mà \(3\left(n-1\right)⋮n-1\) nên \(7⋮n-1\)
\(\Rightarrow n-1\inƯ\left(7\right)=\left\{1;7\right\}\\ \Rightarrow n\in\left\{2;8\right\}\)
\(3n+4\Leftrightarrow3n-3+7\Leftrightarrow3\left(n-1\right)+7\)
\(3n+4⋮n-1\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\in U\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(\Rightarrow n\in\left\{-6;;2;0;8\right\}\)
Mà n \(\in N\)
\(\Rightarrow\left\{{}\begin{matrix}n=2\\n=8\end{matrix}\right.\)