Đường thẳng\(\left(d\right):y=mx+m-1\) tạo với 2 trục toạ độ Ox và Oy
một tam giác có diện tích bằng 2. Vậy m = ???
mọi người bảo hộ mình cách làm với ! ! !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
em nghi dk m la so nguyen ta co;
y = mx+m-1
yx=4 (vi S=2)
neu x=2 thi y=2 nen thay vao ta tinh duoc m=1
neu x=1 thi y=4 ............m=5/2
\(\left(m+1\right)x+\left(m-2\right)y=3\)\(\left(m\ne-1;m\ne2\right)\)
\(y=0\Leftrightarrow x=\dfrac{3}{m+1}\Rightarrow A\left(\dfrac{3}{m+1};0\right)\Rightarrow OA=\left|\dfrac{3}{m+1}\right|\)
\(x=0\Leftrightarrow y=\dfrac{3}{m-2}\Leftrightarrow B\left(0;\dfrac{3}{m-2}\right)\Rightarrow OB=\left|\dfrac{3}{m-2}\right|\)
\(S_{_{ }^{ }\Delta ABO}=\dfrac{9}{2}=\dfrac{1}{2}OA.OB=\dfrac{1}{2}.\dfrac{9}{\left|m+1\right|.\left|m-2\right|}\Leftrightarrow\dfrac{1}{\left|m+1\right|.\left|m-2\right|}=9\Leftrightarrow\left|m+1\right|.\left|m-2\right|=9\Leftrightarrow\left(m+1\right)^2.\left(m-2\right)^2-81=0\Leftrightarrow\left(m^2-m-11\right)\left(m^2-m+7\right)=0\Leftrightarrow\left[{}\begin{matrix}m^2-m-11=0\Leftrightarrow m=\dfrac{1\pm3\sqrt{5}}{2}\left(tm\right)\\m^2-m+7=0\left(vô-nghiệm\right)\end{matrix}\right.\)
\(\Rightarrow m=\dfrac{1\pm3\sqrt{5}}{2}\)
Cho x = 0 => \(y=\dfrac{3}{m-2}\)
vậy d cắt Oy tại A(0;3/m-2) => Oy = \(\left|\dfrac{3}{m-2}\right|\)
Cho y = 0 => \(x=\dfrac{3}{m+1}\)
vậy d cắt Ox tại B(3/m+1;0) => Ox = \(\left|\dfrac{3}{m+1}\right|\)
Ta có : \(S_{OAB}=\dfrac{1}{2}.OB.OA=\dfrac{1}{2}.\dfrac{9}{\left|\left(m+1\right)\left(m-2\right)\right|}=\dfrac{9}{2}\)
\(\Leftrightarrow\left|\left(m+1\right)\left(m-2\right)\right|=1\Leftrightarrow\left[{}\begin{matrix}m^2-m-3=0\\m^2-m-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1+\sqrt{13}}{2};m=\dfrac{1-\sqrt{13}}{2}\\m=\dfrac{1+\sqrt{5}}{2};m=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)
a) Gọi \(A\in Ox;B\in Oy\Rightarrow\Delta OAB\)vuông tại O
Đường thẳng (d) giao Ox tại điểm \(A\left(x;0\right)\)-> thay y=0 vào hàm số ta được: 0=(m+2)x+3 -> (m+2)x=-3 -> \(x=\frac{-3}{m+2}\)
-> Điểm \(A\left(\frac{-3}{m+2};0\right)\)-> \(OA=|\frac{-3}{m+2}|\)(OA>0)
Đường thẳng (d) giao Oy tại điểm \(B\left(0;y\right)\)-> thay x=0 vào hàm số ta được: y=(m+2).0+3=3
-> Điểm \(B\left(0;3\right)\)-> \(OB=3\)
Có: \(S_{\Delta OAB}=\frac{3}{4}=\frac{1}{2}OA\cdot OB=\frac{1}{2}\cdot3\cdot\frac{|-3|}{|m+2|}=\frac{3\cdot3}{2|m+2|}=\frac{9}{2|m+2|}\)
\(\Rightarrow6|m+2|=36\Leftrightarrow|m+2|=6\Leftrightarrow\orbr{\begin{cases}m+2=6\\m+2=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=4\\m=-8\end{cases}}\)(TM)
Vậy...
b) ĐK: OA>0
\(\Delta OAB\)vuông tại O -> \(AB=\sqrt{OA^2+OB^2}=\sqrt{3^2+\left(\frac{-3}{m+2}\right)^2}=\sqrt{9+\frac{9}{\left(m+2\right)^2}}\)
Kẻ \(OH\perp d\)tại H -> OH là khoảng cách từ đường thẳng từ O đến d
Áp dụng htl trong \(\Delta OAB\)vuông tại O, đường cao OH -> \(OA.OB=OH.AB\)
\(\rightarrow3\cdot\frac{|-3|}{|m+2|}=\frac{3\sqrt{2}}{2}.\sqrt{9+\frac{9}{\left(m+2\right)^2}}\)
\(\Leftrightarrow\left(3\cdot\frac{|-3|}{|m+2|}\right)^2=\left(\frac{3\sqrt{2}}{2}\right)^2\left(9+\frac{9}{\left(m+2\right)^2}\right)\)
\(\Leftrightarrow\frac{81}{\left(m+2\right)^2}=\frac{9\cdot9}{2}+\frac{9\cdot9}{2\left(m+2\right)^2}\Leftrightarrow\frac{81}{\left(m+2\right)^2}=\frac{81}{2}+\frac{81}{2\left(m+2\right)^2}\)
\(\Leftrightarrow\frac{1}{\left(m+2\right)^2}-\frac{1}{2}-\frac{1}{2\left(m+2\right)^2}=0\Leftrightarrow\frac{2-\left(m+2\right)^2-1}{2\left(m+2\right)^2}=0\) ( \(2\left(m+2\right)^2>0\))
\(\Rightarrow1-\left(m+2\right)^2=0\Rightarrow\left(m+2\right)^2=1\Leftrightarrow\orbr{\begin{cases}m+2=1\\m+2=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=-1\\m=-3\end{cases}}\)(TM)
Vậy...
Hì cậu kiểm tra xem tớ có sai dấu hay sai bước chỗ nào với nhé vì tớ hay cẩu thả lắm:'33
Gọi A,B lần lượt là giao của (d) với trục Ox và Oy
Tọa độ A là:
y=0 và (2m+1)x-1=0
=>x=1/(2m+1) và y=0
=>OA=1/|2m+1|
Tọa độ B là:
x=0 và y=-1
=>OB=1
Theo đề, ta có: S OAB=1/2
=>1/2*OA*OB=1/2
=>1/|2m+1|=1
=>|2m+1|=1
=>2m+1=1 hoặc 2m+1=-1
=>m=-1 hoặc m=0
2: Tọa độ điểm A là:
\(\left\{{}\begin{matrix}y_A=0\\-x_A+1=0\end{matrix}\right.\Leftrightarrow A\left(1;0\right)\)
Tọa độ điểm B là:
\(\left\{{}\begin{matrix}x_B=0\\y_B=-0+1=1\end{matrix}\right.\)
Vậy: B(0;1)
\(S_{OAB}=\dfrac{OA\cdot OB}{2}=\dfrac{1}{2}\)
3: Vì (d')//(d) nên a=-1
Vậy: (d'): y=-x+b
Thay x=0 và y=-2 vào (d'), ta được:
b-0=-2
hay b=-2
d cắt 2 trục toạ độ nên hệ số góc khác 0, hay m khác 0.
Cắt Ox: \(y=0\Rightarrow x=\frac{1-m}{m}\Rightarrow A\left(\frac{1-m}{m};\text{ }0\right)\)
Cắt Oy: \(x=0\Rightarrow y=m-1\Rightarrow B:\left(0;\text{ }m-1\right)\)
\(S_{OAB}=\frac{1}{2}OA.OB=\frac{1}{2}.\left|\frac{1-m}{m}\right|.\left|m-1\right|=2\Rightarrow\left|\frac{\left(m-1\right)^2}{m}\right|=4\)
\(\Rightarrow\frac{\left(m-1\right)^2}{m}=\pm4\)
\(m=-1\)