Tính: 21×3 = ?
A. 23
B. 61
C. 26
D. 63
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. $=-(37+63)+[25+(-25)]+(-9)=-100+0+(-9)=-(100+9)=-109$
b. $=[1+(-3)]+[5+(-7)]+....+[21+(-23)]$
$=\underbrace{(-2)+(-2)+....+(-2)}_{6}=(-2).6=-12$
c. $=-(280+20)+[-(79+21)]=-300+(-100)=-(300+100)=-400$
d. $=[-(27+43)]+[-(208+102)]=-70+(-310)=-(70+310)=-380$
e. $=(38+120)-(12+46)=158-58=100$
f. $=9+15+11+24=(9+11)+(15+24)=20+39=59$
a) 1125 - (374 + 1125) + (-65 + 374)
= 1125 - 374 - 1125 + (-65) + 374
= (1125 - 1125) + (-374 + 374) + (-65)
= 0 + 0 + (-65)
= -65
b) -23. 63 + 23 . 21 - 58 . 23
= 23 .(-63) + 23 . 21 - 58 . 23
= 23 . [(-63) + 21 - 58]
= 23 . (-100)
= -2300
c) -2003 + (-21 + 75 + 2003)
= -2003 + (-21) + 75 + 2003
= (-2003 + 2003) + (-21) + 75
= 0 + 54
= 54
d) 942 - 2567 + 2563 - 1942
= (942 - 1942) + (-2567 + 2563)
= -1000 + (-4)
= -1004
e) 12 - 12 + 11 + 10 - 9 + 8 - 7 + 5 - 4 + 3 + 2 - 1
= 0 + 11 + 1 + 1 + 1 + 3 + 1
= 18
A= 3/11*16+3/16*21+3/21*26+.....+3/61*66
\(=\frac{3}{5}\left(\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\right)\)
\(=\frac{3}{5}\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{3}{5}\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(=\frac{3}{5}\cdot\frac{5}{66}\)
\(=\frac{1}{22}\)
\(A=\frac{3}{11.16}+\frac{3}{16.21}+\frac{3}{21.26}+...+\frac{3}{61.66}\)
\(\Rightarrow A=\frac{3}{5}\left(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\right)\)
\(\Rightarrow A=\frac{3}{5}.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{61}-\frac{1}{66}\right)\)
\(\Rightarrow A=\frac{3}{5}.\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(\Rightarrow A=\frac{3}{5}.\frac{5}{66}\)
\(\Rightarrow A=\frac{1}{22}\)
Vậy \(A=\frac{1}{22}\)
A,
S=1+4+7+...+79
Khoảng cách giữa 2 số hạng liên tiếp:
4-1=3
Số lượng số hạng của dãy:
(79-1):3 + 1 = 27 (số)
Tổng của dãy:
(1+79):2 x 27 = 1080
B,
S= 15+17+19+21+...+151+153
Khoảng cách giữa 2 số hạng liên tiếp:
153 - 151= 2
Số lượng số hạng:
(153 - 15):2 +1 = 70 (số hạng)
Tổng của dãy:
(15+153):2 x 70 = 5880
Bài 1:
a) \(\frac{16}{15}.\frac{\left(-5\right)}{14}.\frac{54}{24}.\frac{56}{21}\)
\(=\frac{4.2.2}{5.3}.\frac{\left(-5\right)}{2.7}.\frac{3.3}{4}.\frac{8}{3}\)
\(=\frac{4.2.2.\left(-5\right).3.3.8}{5.3.2.7.4.3}\)
\(=\frac{-16}{7}\)
b) \(\frac{7}{3}.\frac{\left(-5\right)}{2}.\frac{15}{21}.\frac{4}{\left(-5\right)}\)
\(=\frac{7}{3}.\frac{\left(-5\right)}{2}.\frac{5}{7}.\frac{2.2}{\left(-5\right)}\)
\(=\frac{7.\left(-5\right).5.2.2}{3.2.7.\left(-5\right)}\)
\(=\frac{10}{3}\)
Bài 2:
a) \(\frac{21}{24}.\frac{11}{9}.\frac{5}{7}=\frac{7}{8}.\frac{11}{9}.\frac{5}{7}=\frac{11.5}{8.9}=\frac{55}{72}\)
b) \(\frac{5}{23}.\frac{17}{26}+\frac{5}{23}.\frac{9}{26}\)
\(=\frac{5}{23}.\left(\frac{17}{26}+\frac{9}{26}\right)=\frac{5}{23}.1=\frac{5}{23}\)
c) \(\left(\frac{3}{29}-\frac{1}{5}\right).\frac{29}{3}=\frac{3}{29}.\frac{29}{3}-\frac{1}{5}.\frac{29}{3}\)
\(=1-1\frac{14}{15}=\frac{14}{15}\)
Bài 3:
a) x/5 = 2/5
=> x =2
b) -4/x = 20/14 = 10/7
=> -4/x = 10/7
=> x.10 = (-4).7
x.10 = - 28
x= -28 :10
x= -2,8
c) 4/7 = 12/x = 12/ 21
=> 12/x = 12/21
=> x = 21
d) 3/7 = x / 21 = 9/21
=> x/21 = 9/21
=> x= 9
a: \(61\cdot45+61\cdot23-68\cdot51\)
\(=61\left(45+23\right)-68\cdot51\)
\(=68\cdot61-68\cdot51\)
\(=68\left(61-51\right)=68\cdot10=680\)
b: \(3\cdot5^2-\left(75-4\cdot2^3\right)\)
\(=75-75+4\cdot8\)
\(=4\cdot8=32\)
c: \(36:\left\{2^2\cdot5-\left[30-\left(5-1\right)^2\right]\right\}\)
\(=\dfrac{36}{20-30+4^2}\)
\(=\dfrac{36}{-10+16}=\dfrac{36}{6}=6\)
d: \(\left(12\cdot49-3\cdot2^2\cdot7^2\right):\left(2020\cdot2021\right)\)
\(=\dfrac{\left(12\cdot49-12\cdot49\right)}{2020\cdot2021}=0\)
a. \(C=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
\(=\frac{1}{11}-\frac{1}{66}=\frac{5}{66}\)
b. \(D=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{4}{4.7}+...+\frac{3}{97.100}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{100}\right)=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)
\(C=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-....-\frac{1}{66}\)
\(C=\frac{1}{11}-\frac{1}{66}=\frac{5}{66}\)
\(D=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-....-\frac{1}{100}\right)\)
\(D=\frac{2}{3}.\left(1-\frac{1}{100}\right)=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)
\(A=\frac{3}{11.16}+\frac{3}{16.21}+\frac{3}{21.26}+...+\frac{3}{61.66}\)
\(A:3.5=\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\)
\(A:3.5=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{61}-\frac{1}{66}\)
\(A:3.5=\frac{1}{11}-\frac{1}{66}=\frac{5}{66}\)
=> \(A=\frac{5}{66}:5.3=\frac{1}{22}\)
\(A=\frac{3}{11.16}+\frac{3}{16.21}+\frac{3}{21.26}+...+\frac{3}{61.66}\)
\(A=\frac{3}{5}.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{61}-\frac{1}{66}\right)\)
\(A=\frac{3}{5}.\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(A=\frac{3}{5}.\frac{5}{66}\)
\(A=\frac{15}{330}\)
Rồi nha
Đáp án D