K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2021

help mik voi mik sap nop roi

12 tháng 9 2021

giải thik bước giải

\(\Rightarrow\)1/2 AB =AM=1/2 AD=CN

MẶT KHÁC M,N LẦN LƯỢT LÀ TRUNG ĐIỂM CỦA AB VÀ CD

DO ĐÓ AM/CN

TỨ GIÁC AMCN CÓ CẶP CẠNH ĐỐI VỪA SONG SONG VỪA BẰNG NHAU NÊN LÀ HÌNH BÌNH HÀNH (ĐPCM)

19 tháng 12 2021

a: Xét tứ giác EBFD có 

EB//FD

EB=FD

Do đó: EBFD là hình bình hành

21 tháng 7 2021

help

 

23 tháng 10 2023

a: \(AM=MB=\dfrac{AB}{2}\)

\(CN=DN=\dfrac{CD}{2}\)

mà AB=CD

nên AM=MB=CN=DN

Xét tứ giác AMND có

AM//ND

AM=ND

Do đó: AMND là hình bình hành

Hình bình hành AMND có AM=AD

nên AMND là hình thoi

b: Xét tứ giác BMNC có

BM//NC

BM=NC

Do đó: BMNC là hình bình hành

=>BN cắt MC tại trung điểm của mỗi đường

=>F là trung điểm chung của BN và MC

AMND là hình thoi

=>AN cắt MD tại trung điểm của mỗi đường

=>E là trung điểm chung của AN và MD

Xét ΔMDC có

E,F lần lượt là trung điểm của MD,MC

=>EF là đường trung bình

=>EF//DC

27 tháng 10 2021

a: Xét ΔHAB có 

N là trung điểm của HB

M là trung điểm của HA

Do đó: NM là đường trung bình của ΔAHB

Suy ra: \(NM=\dfrac{AB}{2}=2\left(cm\right)\)

Đề sai rồi bạn

16 tháng 2 2020

Giải thích các bước giải:

a)Ta có: \(\widehat{M_{1}}=\widehat{M_{2}}\) (2 góc đổi đỉnh)
\(\Rightarrow \Delta AMP=\Delta BMC (g.c.g)\Rightarrow MP=MC\)
Xét tứ giác APBC có AB và CP là 2 đường chéo nhau tại trung điểm mỗi đường nên APBC là hình bình hành.
Vì APBC là hình bình hành nên \(BC\parallel AP\Rightarrow BC\parallel DP\)mà \(BC\perp CD\)
\(\Rightarrow BCDP\) là hình thang vuông (Điều phải chứng minh).
b)

Nhận xét: \(S_{ADC}=S_{ABC}=S_{ABP}\) và đặt \(S_{ADC}=S_{ABC}=S_{ABP}=a\)

Khi đó: \(2S_{BCDP}=2.3a=6a;3S_{APBC}=3.2a=6a\)

Suy ra đpcm.

c) Vì M là trung điểm của AB nên \(BM=\frac{1}{2}AB\)
Vì N là trung điểm của BC nên \(CN=\frac{1}{2}BC\)
mà \(AB=BC\Rightarrow BM=CN\Rightarrow \Delta CBM=\Delta DCN (c.g.c)\Rightarrow \widehat{C_{1}}=\widehat{D_{1}}\)
mà tam giác DCN vuông tại C nên \(\widehat{D_{1}}+\widehat{N_{1}}=90^{\circ}\Rightarrow \widehat{C_{1}}+\widehat{N_{1}}=90^{\circ}\Rightarrow \widehat{CQN}=90^{\circ} \) 
\(\Rightarrow \Delta PDQ \) vuông tại Q.
Xét tam giác PDQ vuông tại Q, có QA là đường trung tuyến ứng với cạnh huyền
\(\Rightarrow QA=\frac{1}{2}PD=AD\)
mà \(AD=AB\Rightarrow AQ=AB\) (Điều phải chứng minh).