K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2017

20 tháng 12 2017

10 tháng 12 2023

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

b: ΔABD=ΔEBD

=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

Xét ΔDAF và ΔDEC có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

DF=DC

Do đó: ΔDAF=ΔDEC

=>AF=CE

c: Ta có: ΔDAF=ΔDEC

=>\(\widehat{DAF}=\widehat{DEC}\)

mà \(\widehat{DEC}=90^0\)

nên \(\widehat{DAF}=90^0\)

Ta có: \(\widehat{BAD}+\widehat{DAF}=\widehat{BAF}\)

=>\(\widehat{BAF}=90^0+90^0=180^0\)

=>B,A,F thẳng hàng

Xét ΔBFC có BA/AF=BE/EC

nên AE//FC

6 tháng 4 2020

Gọi giao điểm của cạnh BD và AE là F

Xét tam giác BAD và tam giác BED, có:

BA=BE (giả thiết)

Góc DBA=góc BDE (BD là tia pg của gócB)

Cạnh BD chung

=> Tam giác BAD và tam giác BED bằng nhau

Vì tam giác BAD và tam giác BED bằng nhau

=> AF=FE (2 cạnh tương ứng) (1)

Và góc AFB=góc EFB (2 góc tương ứng)

Vì 2 góc AFB và EFB là 2 góc kề bù

=> AFB+EFB=180*

Mà 2 góc AFB và EFB bằng nhau

=> AFB=EFB=180*/2=90*(2)

từ (1),(2) suy ra BD là đường trung trực của AE

23 tháng 11 2016

Ta có hình vẽ:

A B C D E H

a) Vì BD là phân giác của ABC nên ABD = CBD

Xét Δ ABD và Δ EBD có:

BA = BE (gt)

ABD = EBD (cmt)

BD là cạnh chung

Do đó, Δ ABD = Δ EBD (c.g.c)

=> AD = DE (2 cạnh tương ứng) (đpcm)

b) Δ ABD = Δ EBD (câu a) => BAD = BED = 90o (2 góc tương ứng)

=> Δ DEC vuông tại E

Δ ABC vuông tại A có: ABC + C = 90o (1)

Δ CED vuông tại E có: EDC + C = 90o (2)

Từ (1) và (2) => ABC = EDC (đpcm)

c) Gọi giao điểm của AE và BD là H

Xét Δ ABH và Δ EBH có:

AB = BE (gt)

ABH = EBH (câu a)

BH là cạnh chung

Do đó, Δ ABH = Δ EBH (c.g.c)

=> BHA = BHE (2 góc tương ứng)

Mà BHA + BHE = 180o (kề bù) nên BHA = BHE = 90o

=> \(BH\perp AE\) hay \(BD\perp AE\left(đpcm\right)\)

5 tháng 12 2016

học ngu vl

bucminh

14 tháng 12 2017

Bài này khó đấy!

A B C D E

A) Xét tam giác BAD với ABED

ta có:  BD là cạnh chung                    (gt)

AB=AE

\(\widehat{ABD}=\widehat{DBC}\) vì BD là tia phân giác của \(\widehat{B}\)

=> Tam giác BAD= tam giác BED     (c.g.c)

=> AD=DE=2 cạnh tương ứng với nhau

b) Từ ý a thì

Ta có: Tam giác BAD=tam giác BED 

=>\(\widehat{BAD}=\widehat{BED}\)2 GÓC TƯƠNG ỨNG

=> \(\widehat{BED}=\widehat{BAD}=90^o\)

Xét tam giác ABC và tam giác EDC 

Ta có:\(\widehat{BAC}=\widehat{DEC}=90^o\)=\(\widehat{C}\)chung

=>tam giác ABC~tam giác EDC (g-g)

<=>\(\widehat{ABC}=\widehat{EDC}\)

C)Xét tam giác ABE 

ta có: AB=AE

=> tam giác ABC cân tại B

Mà BD là tia phân giác g \(\widehat{B}\)

=> BD là đường cao

=>\(BD\perp AC\)

14 tháng 12 2017

tam giac la:

90*5=450

a) Xét ΔABD và ΔEBD có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

Suy ra: DA=DE(hai cạnh tương ứng) và \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(gt)

nên \(\widehat{BED}=90^0\)

hay DE⊥BC

Ta có: DA=DE(cmt)

mà DE<DC(ΔDEC vuông tại E có DC là cạnh huyền)

nên DA<DC

b) Ta có: ΔBAC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)(1)

Ta có: ΔEDC vuông tại E(cmt)

nên \(\widehat{EDC}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)(2)

Từ (1) và (2) suy ra \(\widehat{ABC}=\widehat{EDC}\)(đpcm)

c) Ta có: BA=BE(gt)

nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: DA=DE(cmt)

nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(4)

Từ (3) và (4) suy ra BD là đường trung trực của AE

hay BD\(\perp\)AE(đpcm)

a: Xét ΔDAB và ΔDEB có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔDAB=ΔDEB

=>góc DEB=90 độ

=>DE vuông góc BC

b: AD=DE

mà DE<DC

nên AD<DC

c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC
=>ΔDAF=ΔDEC