Câu 7:
Tam giác ABC đều, cạnh AB =căn 3 . Khi đó, đường tròn tâm A tiếp xúc với BC sẽ có bán kính bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi F là trung điểm MN.\(C_1\) là tiếp điểm của (P) và (Q).\(FC_1\) cắt AB,AC tại D,E.
\(\Rightarrow\left(P\right),\left(Q\right)\) lần lượt là đường tròn nội tiếp của \(\Delta DBF,\Delta EFC\)
Dễ dàng chứng minh được PQNM là hình chữ nhật (có 3 góc vuông)
\(\Rightarrow FC_1\bot BC\)
Xét \(\Delta DFB\) và \(\Delta CFE:\) Ta có: \(\left\{{}\begin{matrix}\angle EFC=\angle BFD=90\\\angle ECF=\angle BDF=90-\angle ABC\end{matrix}\right.\)
\(\Rightarrow\Delta DFB\sim\Delta CFE\left(g-g\right)\)
mà bán kính đường tròn nội tiếp \(\Delta DFB,\Delta CFE\) bằng nhau
\(\Rightarrow\Delta DFB=\Delta CFE\Rightarrow DF=FC\Rightarrow\Delta DFC\) vuông cân tại F
Ta có: \(\angle DAC=\angle DFC=90\Rightarrow DAFC\) nội tiếp
\(\Rightarrow\angle FAC=\angle FDC=45\Rightarrow\) AF là phân giác \(\angle BAC\Rightarrow\) đpcm
Câu hỏi của Nguyễn Anh Khoa - Toán lớp 9 - Học toán với OnlineMath
Kẽ OA cắt đường tròn tại D cắt BC tại K
Ta có OA = OB = OD = R
\(\Rightarrow\)\(\Delta ABD\) vuông tại D
\(\Rightarrow BD=\sqrt{OD^2-AB^2}=\sqrt{10^2-8^2}=6\)
Ta có OK là đường trung trực của BC nên \(\hept{\begin{cases}OK⊥BC\\BK=CK\end{cases}}\)
Ta lại có: \(S_{\Delta ABD}=\frac{1}{2}AB.BD=\frac{1}{2}AD.BK\)
\(\Rightarrow BK=\frac{AB.BD}{AD}=\frac{8.6}{10}=4,8\)
\(\Rightarrow BC=2BK=4,8.2=9,6\)
Viết nhầm tùm lum hết. Do không thấy cái hình. Mà thôi nhìn hình sửa hộ luôn nhé
ABC vuông tại A
Gọi r là bán kính ; các tiếp điểm AC ;AB ;BC la M;N;P
=> AN = AM =r
=> BN =BP =AB - r = 4- r ; CM =CP =AC-r = 3 -r
Mà BP + PC =BC => 4-r + 3 -r =5 => 2r =2 => r =1
se bang duong cao ke tu A