Chứng tỏ rằng:
P= 4a2 + 4a chia hết cho 8 với mọi a thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=4a^2+4a\)
\(\Rightarrow P=4\left(a^2+a\right)⋮2\) (1)
\(\Rightarrow P=4\left(a^2+a\right)⋮4\) (2)
Từ (1) và (2) \(\Rightarrow P=4\left(a^2+a\right)⋮8\)
\(\Rightarrow P=4a^2+4a⋮8\left(đpcm\right)\)
a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2
a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp
=> m(m+1)(m-1) chia hết cho 3 và 2
Mà (3,2) = 1
=> m(m+1)(m-1) chia hết cho 6
=> m^3 - m chia hết cho 6 V m thuộc Z
b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8
=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z
Tick nha pham thuy trang
a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6
mk chỉ biết có thế thôi
Bài 2:Ta có:\(a+7⋮a\)
\(\Rightarrow7⋮a\)
\(\Rightarrow a\inƯ\left(7\right)\)
\(Ư\left(7\right)=1;-1;7;-7\)
Suy ra \(a\in1;-1;7;-7\)
bà 3:\(a+1⋮a-2\)
\(a-2+3⋮a-2\)
\(3⋮a-2\)
\(\Rightarrow a-2\inƯ\left(3\right)\)
\(Ư\left(3\right)=1;3\);-1;-3
Suy ra:\(a\in3;5;1;-1.\)
Vì n-1;n;n+1 là ba số nguyên liên tiếp
nên n(n-1)(n+1) chia hết cho 3!
=>n(n-1)(n+1) chia hết cho 3
Vì n-1;n;n+1 là ba số nguyên liên tiếp
nên n(n-1)(n+1) chia hết cho 3!
=>n(n-1)(n+1) chia hết cho 3
a) \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)
\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)
\(=12.2n\)
\(=24n\)
Vì 24n chia hết cho 24 với mọi n
=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)
b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.
\(n^2+4n+3\)
\(=n^2+n+3n+3\)
\(=n\left(n+1\right)+3\left(n+1\right)\)
\(=\left(n+3\right)\left(n+1\right)\)
Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )
Thay n = 2k + 1 vào ta được
\(\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=2\left(k+2\right)2\left(k+1\right)\)
\(=4\left(k+2\right)\left(k+1\right)\)
Vì (k + 2)(k + 1) là tích của hai số liên tiếp
=> (k + 2)(k + 1) chia hết cho 2
=> 4(k + 2)(k + 1) chia hết cho 8
=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )
c) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)
\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)
\(=4\left(2n+2\right)\)
\(=4.2\left(n+1\right)\)
\(=8\left(n+1\right)\)
Vì 8(n + 1) chia hết cho 8 với mọi n
=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )
P = 4a2 + 4a = 4(a + a2)
Bây giờ chỉ còn CM a + a2 chia hết cho 2
a + a2 = a(a+ 1) chia hết cho 2
=> ĐPCM