Cho tam giác ABC có ba góc nhọn, biết A B = 15 c m , A C = 13 c m và đường cao A H = 12 c m . Gọi N, M lần lượt là hình chiếu vuông góc của H xuống AC và AB.
a) Chứng minh rằng ΔAHN ∼ ΔACH
b) Tính độ dài BC
c) Chứng minh ΔAMN ∼ ΔACB
d) Tính MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Do E là trung điểm AB, M là trung điểm BC
\(\Rightarrow\) EM là đường trung bình tam giác ABC
\(\Rightarrow EM||AC\)
\(\Rightarrow\widehat{MAC}=\widehat{AME}\) (so le trong) (1)
Trong tam giác vuông AHB, HE là trung tuyến ứng với cạnh huyền
\(\Rightarrow HE=\dfrac{1}{2}AB=AE\) \(\Rightarrow\Delta AHE\) cân tại E
\(\Rightarrow\widehat{AHE}=\widehat{BAH}\) (2)
Mà \(\widehat{BAH}=\widehat{MAC}\) (giả thiết) (3)
(1);(2);(3) \(\Rightarrow\widehat{AME}=\widehat{AHE}\)
\(\Rightarrow AMHE\) nội tiếp (2 góc bằng nhau cùng chắn AE)
\(\Rightarrow\) 4 điểm A, E, M, H cùng thuộc 1 đường tròn
b.
Theo cmt AMHE nội tiếp \(\Rightarrow\widehat{AEM}=\widehat{AHM}=90^0\) (cùng chắn AM)
\(\Rightarrow EM\perp AB\)
Mà \(EM||AC\)
\(\Rightarrow AB\perp AC\)
\(\Rightarrow\widehat{BAC}=90^0\)
a) Gọi G là trung điểm của BC
Ta có: ΔDBC vuông tại D(BD\(\perp\)AC tại D)
mà DG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)
nên \(DG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)
Ta có: ΔEBC vuông tại E(CE\(\perp\)AB)
mà EG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)
nên \(EG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)
Ta có: G là trung điểm của BC(gt)
nên \(BG=CG=\dfrac{BC}{2}\)(3)
Từ (1), (2) và (3) suy ra GB=GC=GE=GD
hay B,C,D,E cùng nằm trên một đường tròn(đpcm)
a) Ta có: \(BC^2=13^2=169\)
\(AB^2+AC^2=5^2+12^2=169\)
Do đó: \(BC^2=AB^2+AC^2\)(=169)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
a: Xét ΔADH vuông tại D và ΔAHB vuông tại H có
góc DAH chung
=>ΔADH đồg dạng vơi ΔAHB
b: ΔAHB vuông tại H có HD là đường cao
nên AD*AB=AH^2
ΔAHC vuông tại H có HE là đường cao
nên AE*AC=AH^2
=>AE*AC=AD*AB
a) Xét ΔANH và ΔAHC có:
∠(NAH) chung
∠(ANH) = ∠(AHN) = 90o
⇒ ΔANH ∼ ΔAHC (g.g)
b) Ta có :
Tương tự : CH = 5 (cm)
⇒ BC = BH + CH = 9 + 5 = 14 (cm)
c) Theo chứng minh trên ta có:
Chứng minh tương tự ta có :
ΔAMH ∼ ΔAHB ⇒ AH2 = AM.AB (2)
Từ (1) và (2) ⇒ AN.AC = AM.AB (3)
Xét ΔAMN và ΔACB có :
∠A chung
AN.AC = AM.AB
⇒ ΔAMN ∼ ΔACB (c.g.c)
d) Ta có : ΔAMH ∼ ΔAHB
Lại có ΔAMN ∼ ΔACB (cmt)