Tìm nghiệm nguyên của phương trình 2x + 13y=156.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có
2x+13y=1562x+13y=156
\(\Leftrightarrow\)13y=156−2x\(\Leftrightarrow\)13y=156−2x
\(\Leftrightarrow\)y=156−2x13<−>y=156−2x13
Để yy nguyên thì 156−2x156−2x phải chia hết cho 13.
Lại có 156−2x=2(78−x)156−2x=2(78−x). Do đó là số chẵn.
Vậy 156−2x∈B(13)={26,52,78,104,130,156}156−2x∈B(13)={26,52,78,104,130,156}
Do đó x∈{65,52,39,26,13,0}
a) 5x−13y=7⇔y=5x−713=5x+5−13135x−13y=7⇔y=5x−713=5x+5−1313
=5(x+1)13−1=5(x+1)13−1(1)
đật x+1=13t⇔x=13t−1(t−thuoc−Z)x+1=13t⇔x=13t−1(t−thuoc−Z)
thay vào (1) ta có y=5t−1(t−thuoc−Z)y=5t−1(t−thuoc−Z)
b) 6x−5y=−38⇔x=5y−386=5y+10−4866x−5y=−38⇔x=5y−386=5y+10−486
=5(y+2)6−8=5(y+2)6−8(1)
đặt y+2=6t⇔y=6t−2(t−thuoc−Zy+2=6t⇔y=6t−2(t−thuoc−Z(2)
vì y>0⇒t>13y>0⇒t>13(3)
thay (2) vào (1) ta có;
x=5t−8x=5t−8vì x<0⇒t<85(t−thuoc−Z)x<0⇒t<85(t−thuoc−Z)(4)
từ (3),(4) 13<t<8513<t<85
mà t thuôc Z nên t=1
với t= 1 thì x=-3,y=4
a) \(2x+13y=156\) (1)
.Ta thấy 156 và 2y đều chia hết cho 2 nên \(13y\) chia hết cho 2,do đó y chia hết cho 2 (do 13 và 2 nguyên tố cùng nhau)
Đặt \(y=2t\left(t\in Z\right)\).Thay vào phương trình (1),ta được:\(2x+13.2t=156\Leftrightarrow x+13t=78\)
Do đó \(\hept{\begin{cases}x=78-13t\\y=2t\end{cases}}\) (t là số nguyên tùy ý)
b)Biến đổi phương trình thành: \(2xy-4x=7-y\)
\(=2x\left(y-2\right)=7-y\).Ta thấy \(y\ne2\)(vì nếu y = 2 thì ta có 0.2x = 5 , vô ngiệm )
Do đó \(x=\frac{7-y}{y-2}=\frac{7+2-y-2}{y-2}=\frac{9}{y-2}-1\) .Do vậy để x nguyên thì \(\frac{9}{y-2}\) nguyên
hay \(y-2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\).Đến đây lập bảng tìm y là xong!
c) \(3xy+x-y=1\)
\(\Leftrightarrow9xy+3x-3y=3\)
\(\Leftrightarrow9xy+3x-3y-1=2\)
\(\Leftrightarrow3x\left(3y+1\right)-1\left(3y+1\right)=2\)
\(\Leftrightarrow\left(3x-1\right)\left(3y+1\right)=2\).Đến đây phương trình đã được đưa về phương trình ước số,bạn tự giải (mình lười quá man!)
a) Ta có
2x+13y=1562x+13y=156
<−>13y=156−2x<−>13y=156−2x
<−>y=156−2x13<−>y=156−2x13
Để yy nguyên thì 156−2x156−2x phải chia hết cho 13.
Lại có 156−2x=2(78−x)156−2x=2(78−x). Do đó là số chẵn.
Vậy 156−2x∈B(13)={26,52,78,104,130,156}156−2x∈B(13)={26,52,78,104,130,156}
Do đó x∈{65,52,39,26,13,0}
#Châu's ngốc
`xy=2x-y`
`<=>x(y-2)+y-2=-2`
`<=>(y-2)(x+1)=-2`
Đoạn này lập pt ướ số
Giả sử x;y là các số nguyên thỏa mãn phương trình 2x + 13y = 156
2x + 13y = 156 ⇒ 2x = 156 - 13y
Ta nhận thấy 13y và 156 đều chia hết cho 13.
Do đó 2x ⋮ 13
Đặt x = 13t (t ∈ Z) thay vào phương trình ta được:
2.13t + 13y = 156 ⇔ 26t + 13y = 156 ⇔ 2t + y = 12 ⇔ y = - 2t + 12