Phần tự luận
Nội dung câu hỏi 1
Cho hàm số y= - x 2 (P) và đường thẳng (d): y = 2mx - 5
a) Vẽ đồ thị (P) của hàm số y = - x 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: Thay k=1 vào hàm số, ta được:
y=(2-4)x+5=-2x+5
a) Với x = 0 ⇒ y = 4
⇒ Đồ thị hàm số cắt trục tung tại điểm B (0; 4)
Với y = 0 ⇒ x = -4
⇒ Đồ thị hàm số cắt trục hoành tại điểm A (-4; 0)
Đường thẳng AB chính là đồ thị hàm số y = x + 4
b: PTHĐGĐ là:
1/2x^2-x-4=0
=>x^2-2x-8=0
=>(x-4)(x+2)=0
=>x=4 hoặc x=-2
=>y=8 hoặc y=2
a:
a/ Hai hàm số có đồ thị // với nhau khi
\(\hept{\begin{cases}m-2=1\\3\ne0\end{cases}}\Leftrightarrow m=3\)
b/ Tọa độ giao điểm 2 đường thẳng là nghiệm của hệ
\(\hept{\begin{cases}y=x+3\\y=2x+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=5\end{cases}}\)
c/ Gọi điểm mà đường thẳng luôn đi qua là M(a,b) ta thế vào hàm số được
\(b=ma+3\)
\(\Leftrightarrow ma+3-b=0\)
Để phương trình này không phụ thuôc m thì
\(\hept{\begin{cases}a=0\\3-b=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=3\end{cases}}\)
Tọa độ điểm cần tìm là M(0, 3)
d/ Ta có khoản cách từ O(0,0) tới (d) là 1
\(\Rightarrow=\frac{\left|0-0m-3\right|}{\sqrt{1^2+m^2}}=\frac{3}{\sqrt{1+m^2}}=1\)
\(\Leftrightarrow\sqrt{1+m^2}=3\)
\(\Leftrightarrow m^2=8\)
\(\Leftrightarrow\orbr{\begin{cases}m=2\sqrt{2}\\m=-2\sqrt{2}\end{cases}}\)
a) Vẽ đồ thị hàm số (P): y = (-1)/2 x 2
Bảng giá trị :
x | -4 | -2 | 0 | 2 | 4 |
y = (-1)/2 x2 | -8 | -2 | 0 | -2 | -8 |
Đồ thị hàm số y = (-1)/2 x 2 là một đường Parabol nằm phía dưới trục hoành, nhận trục tung làm trục đối xứng, nhận gôc tọa độ O(0;0) làm đỉnh và là điểm cao nhất.
a) Lập bảng giá trị:
Đồ thị hàm số y = - x 2 là một đường parabol nằm phía dưới trục hoành, nhận trục Oy làm trục đối xứng, nhận gốc O (0; 0) làm đỉnh và là điểm cao nhất.