K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2018

c) Theo định lí Vi-et ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

P = x 1 2 + x 2 2  = (x1 + x2 )2 - 2 x 1 x 2  = 4 m + 3 2  - 2( m 2  + 3)

= 4( m 2  + 6m + 9) - 2( m 2  + 3) = 2 m 2  + 24m + 30

23 tháng 4 2022

\(a.\Leftrightarrow mx^2+2mx-x+m+2=0\)

\(\Leftrightarrow mx\left(x+2\right)+\left(m+2\right)-x=0\)

\(\Leftrightarrow\left(m+2\right)\left(mx+1\right)-x=0\)

\(\Rightarrow\left\{{}\begin{matrix}m=\left(0+x\right):\left(mx+1\right)-2\\m=[\left(0+x\right):\left(m+2\right)-1]:x\end{matrix}\right.\)

8 tháng 1 2024

phương trình này ạ (2m-1)x^2+(m-3)x-6m-2=0 , phương trình trên mình sửa nó lỗi nên viết xuống đây ạ

NV
8 tháng 1 2024

\(\left(2m-1\right)x^2+\left(m-3\right)x-6m-2=0\)

\(\Leftrightarrow2mx^2-x^2+mx-3x-6m-2=0\)

\(\Leftrightarrow m\left(2x^2+x-6\right)-\left(x^2+3x+2\right)=0\)

\(\Leftrightarrow m\left(2x-3\right)\left(x+2\right)-\left(x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[m\left(2x-3\right)-\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(\left(2m-1\right)x-3m-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\\left(2m-1\right)x-3m-1=0\end{matrix}\right.\)

\(\Rightarrow\) Pt luôn có nghiệm \(x=-2\) với mọi m

- Nếu \(2m-1=0\Leftrightarrow m=\dfrac{1}{2}\) pt chỉ có nghiệm duy nhất \(x=-2\)

- Nếu \(m\ne\dfrac{1}{2}\) thì nghiệm còn lại thỏa mãn:

\(\left(2m-1\right)x=3m+1\)

\(\Rightarrow x=\dfrac{3m+1}{2m-1}\)

28 tháng 4 2021

(x2−2x+1+2)(2x−x2−1+7)=18(x2-2x+1+2)(2x-x2-1+7)=18

⇒[(x−1)2+2][7−(x−1)2]=18(1)⇒[(x-1)2+2][7-(x-1)2]=18(1)

Đặt (x−1)2=a(x-1)2=a

(1)⇔(a+2)(7−a)=18(1)⇔(a+2)(7-a)=18

⇒−a2+5a+14=18⇒-a2+5a+14=18

⇒a2−5a+4=0⇒a2-5a+4=0

Ta có a+b+c=1−5+4=0a+b+c=1-5+4=0

⇒a1=1⇒a1=1

a2=41=4a2=41=4

Thay (x−1)2=a(x-1)2=a vào ta được

[(x−1)2=1(x−1)2=4[(x−1)2=1(x−1)2=4

⇒⎡⎢ ⎢ ⎢⎣x−1=1x−1=−1x−1=2x−1=−2⇒[x−1=1x−1=−1x−1=2x−1=−2

⇒⎡⎢ ⎢ ⎢⎣x=2x=0x=3x=−1⇒[x=2x=0x=3x=−1

Vậy nghiệm của phương trình là x={−1;0;2;3}

8 tháng 11 2018

a)  1 , 5 x 2   –   1 , 6 x   +   0 , 1   =   0

Có a = 1,5; b = -1,6; c = 0,1

⇒ a + b + c = 1,5 – 1,6 + 0,1 = 0

⇒ Phương trình có hai nghiệm  x 1   =   1 ;   x 2   =   c / a   =   1 / 15 .

Giải bài 31 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

d)  ( m   –   1 ) x 2   –   ( 2 m   +   3 ) x   +   m   +   4   =   0

Có a = m – 1 ; b = - (2m + 3) ; c = m + 4

⇒ a + b + c = (m – 1) – (2m + 3) + m + 4 = m -1 – 2m – 3 + m + 4 = 0

⇒ Phương trình có hai nghiệm Giải bài 31 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

a: \(\Delta=\left(2m-6\right)^2-4\cdot1\cdot\left(m-3\right)\)

\(=4m^2-24m+36-4m+12\)

\(=4m^2-28m+48\)

\(=4\left(m-3\right)\left(m-4\right)\)

Để phương trình có nghiệm kép thì (m-3)(m-4)=0

=>m=3 hoặc m=4

b: Trường hợp 1: m=7/2

Phương trình sẽ là \(2\cdot\left(2\cdot\dfrac{7}{2}+5\right)x-14\cdot\dfrac{7}{2}+1=0\)

\(\Leftrightarrow24x-48=0\)

hay x=2

=>Nhận

Trường hợp 2: m<>7/2

\(\Delta=\left(4m+10\right)^2-4\cdot\left(2m-7\right)\left(-14m+1\right)\)

\(=16m^2+80m+100-4\left(-28m^2+2m+98m-7\right)\)

\(=16m^2+80m+100+112m^2-400m+28\)

\(=128m^2-320m+128\)

\(=64\left(2m^2-5m+2\right)\)

Để phương trình có hai nghiệm phân biệt thì (2m-1)(m-1)=0

=>m=1 hoặc m=1/2

24 tháng 1 2021

a. m2 ≥ 0 ∀ m 

=>  m2 +1> 0 ∀ m 

b. m2 +2m +3 = m2 + 2m +1 +2 = (m + 1)2 + 2 > 0 ∀ m 

c. m2 ≥ 0 ∀ m

=>  m2 +2> 0 ∀ m 

d.   m2 - 2m +2 =  m2 -2m + 1 +1 =  (m - 1)2 + 1 > 0 ∀ m 

 

a) Để phương trình \(\left(m^2+1\right)x-3=0\) là phương trình bậc nhất một ẩn thì \(m^2+1\ne0\)

\(\Leftrightarrow m^2\ne-1\)

mà \(m^2\ge0\forall m\)

nên \(m^2\ne-1\forall m\)

\(\Leftrightarrow m^2+1\ne0\forall m\)

Vậy: Phương trình \(\left(m^2+1\right)x-3=0\) là phương trình bậc nhất một ẩn với mọi giá trị của tham số m

b) Để phương trình \(\left(m^2+2m+3\right)x+m-1=0\) là phương trình bậc nhất một ẩn thì \(m^2+2m+3\ne0\)

\(\Leftrightarrow\left(m+1\right)^2+2\ne0\)

mà \(\left(m+1\right)^2+2\ge2>0\forall m\)

nên \(\left(m+1\right)^2+2\ne0\forall m\)

hay \(m^2+2m+3\ne0\forall m\)

Vậy: Phương trình \(\left(m^2+2m+3\right)x+m-1=0\) luôn là phương trình bậc nhất một ẩn với mọi tham số m

c) Để phương trình \(\left(m^2+2\right)x-4=0\) là phương trình bậc nhất một ẩn thì \(m^2+2\ne0\)

\(\Leftrightarrow m^2\ne-2\)

mà \(m^2\ge0\forall m\)

nên \(m^2\ne-2\forall m\)

\(\Leftrightarrow m^2+2\ne0\forall m\)

Vậy: Phương trình \(\left(m^2+2\right)x+4=0\) là phương trình bậc nhất một ẩn với mọi giá trị của tham số m

d) Để phương trình \(\left(m^2-2m+2\right)x+m=0\) là phương trình bậc nhất một ẩn thì \(m^2-2m+2\ne0\)

\(\Leftrightarrow\left(m-1\right)^2+1\ne0\)

mà \(\left(m-1\right)^2+1\ge1>0\forall m\)

nên \(\left(m-1\right)^2+1\ne0\forall m\)

hay \(m^2-2m+2\ne0\forall m\)

Vậy: Phương trình \(\left(m^2-2m+2\right)x+m=0\) luôn là phương trình bậc nhất một ẩn với mọi tham số m

Bài 3: 

b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)

hay \(x\in\left\{0;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)

=>x-1=0

hay x=1

d: \(\Leftrightarrow6x^2-3x-4x+2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)

hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)

12 tháng 11 2023

a:

ĐKXĐ: \(x\notin\left\{\dfrac{3}{2};1\right\}\)

 \(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}=\dfrac{x^2-4x+4}{2x^2-2x-3x+3}\)

=>\(y=\dfrac{x^2-4x+4}{2x^2-5x+3}\)

=>\(y'=\dfrac{\left(x^2-4x+4\right)'\left(2x^2-5x+3\right)-\left(x^2-4x+4\right)\left(2x^2-5x+3\right)'}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{\left(2x-4\right)\left(2x^2-5x+3\right)-\left(2x-5\right)\left(x^2-4x+4\right)}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{4x^3-10x^2+6x-8x^2+20x-12-2x^3+8x^2-8x+5x^2-20x+20}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{2x^3-5x^2-2x+8}{\left(2x^2-5x+3\right)^2}\)

b:

ĐKXĐ: x<>-3

 \(y=\left(x+3\right)+\dfrac{4}{x+3}\)

=>\(y'=\left(x+3+\dfrac{4}{x+3}\right)'=1+\left(\dfrac{4}{x+3}\right)'\)

\(=1+\dfrac{4'\left(x+3\right)-4\left(x+3\right)'}{\left(x+3\right)^2}\)

=>\(y'=1+\dfrac{-4}{\left(x+3\right)^2}=\dfrac{\left(x+3\right)^2-4}{\left(x+3\right)^2}\)

y'=0

=>\(\left(x+3\right)^2-4=0\)

=>\(\left(x+3+2\right)\left(x+3-2\right)=0\)

=>(x+5)(x+1)=0

=>x=-5 hoặc x=-1

c:

ĐKXĐ: x<>-2

 \(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\)

=>\(y=\dfrac{5x^2+5x-x-1}{x+2}=\dfrac{5x^2+4x-1}{x+2}\)

=>\(y'=\dfrac{\left(5x^2+4x-1\right)'\left(x+2\right)-\left(5x^2+4x-1\right)\left(x+2\right)'}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{\left(5x+4\right)\left(x+2\right)-\left(5x^2+4x-1\right)}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{5x^2+10x+4x+8-5x^2-4x+1}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{10x+9}{\left(x+2\right)^2}\)

\(y'\left(-1\right)=\dfrac{10\cdot\left(-1\right)+9}{\left(-1+2\right)^2}=\dfrac{-1}{1}=-1\)

d: 

ĐKXĐ: x<>2

\(y=x-2+\dfrac{9}{x-2}\)

=>\(y'=\left(x-2+\dfrac{9}{x-2}\right)'=1+\left(\dfrac{9}{x-2}\right)'\)

\(=1+\dfrac{9'\left(x-2\right)-9\left(x-2\right)'}{\left(x-2\right)^2}\)

=>\(y'=1+\dfrac{-9}{\left(x-2\right)^2}=\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}\)

y'=0

=>\(\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}=0\)

=>\(\left(x-2\right)^2-9=0\)

=>(x-2-3)(x-2+3)=0

=>(x-5)(x+1)=0

=>x=5 hoặc x=-1

1 1 5(4x+7y=164x-3y =-24* y 2b)1 1 3Bài 1. Giải hệ phương trình: a)x y 2Bài 2. Giải các phương trình sau:a) x- 10x + 21 = 0;b) 5x – 17x + 12 = 0c) 2x* - 7x? – 4 = 0;16d)x-3 1-x30= 3Bài 3. Cho phương trình x - 2(m + 1)x + 4m = 0 (1)a) Chứng minh rằng phương trình (1) luôn có nghiệm với mọi m.X x,= 4b) Tìm m để phương trình (1) có hai nghiêm phân biệt thỏaX X,Bài 4. Cho phương trình ấn x : x-4x+m-1%3D0a) Giải phương trình (1) với m=...
Đọc tiếp

1 1 5
(4x+7y=16
4x-3y =-24
* y 2
b)
1 1 3
Bài 1. Giải hệ phương trình: a)
x y 2
Bài 2. Giải các phương trình sau:
a) x- 10x + 21 = 0;
b) 5x – 17x + 12 = 0
c) 2x* - 7x? – 4 = 0;
16
d)
x-3 1-x
30
= 3
Bài 3. Cho phương trình x - 2(m + 1)x + 4m = 0 (1)
a) Chứng minh rằng phương trình (1) luôn có nghiệm với mọi m.
X x,
= 4
b) Tìm m để phương trình (1) có hai nghiêm phân biệt thỏa
X X,
Bài 4. Cho phương trình ấn x : x-4x+m-1%3D0
a) Giải phương trình (1) với m= -4
b) Với x1, X2 là nghiệm phương trình (1). Tìm giá trị của m, biết x1- X2 = 2
Bài 5. Một hình chữ nhật có chiều rộng bé hơn chiều dài là 4m, biết diện tích 320m?. Tính chiều
dài, chiều rộng hình chữ nhật.
Bài 6. Đội một gặt lúa trong 4 giờ thì đội hai đến gặt. Hai đội gặt trong 8 giờ thì xong công việc.
Hỏi nếu gặt một mình thì mỗi đội gặt trong bao lâu thì xong, biết nếu gặt một mình đội một gặt
nhiều thời gian hơn đội hai là 8 giờ.
(1)
Bài 7. Cho tam giác ABC có ba góc nhọn nối tiếp (O). Vẽ hai đường cao BE và CF.
a) Chứng minh tứ giác BFEC nội tiếp đường tròn.
b) Chứng minh AFE = ACB
c) Chứng minh AO1EF

0