Cho tam giác ABC cân tại A và B=36 độ. O là giao điểm 3 đg trung trực, I là giao điểm 3 đg phân giác. CM: BC là đg trung trực của OI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xét ΔABD và ΔAMD có:
góc BAD= góc MAD(AD là tia phân giác )
AD chung
góc ABD = góc AMD(=90độ) (ΔABC ⊥B; DM⊥AC)
⇒ΔABD=ΔAMD(ch-cgv)
b)Có:AB=AM (ΔABD=ΔAMD)
⇒A ϵ đường trung trực của BC (t/c đường trung trực)(1)
Lại có : BD=MD(ΔABD=ΔAMD)
⇒D ϵ đường trung trực BM(t/c đường trung trực) (2)
Từ (1) và(2)⇒AD là đường trung trực BM
c)Xét ΔBNDvàΔMCD có:
góc DBN =góc DMC (90độ)(ΔABC ⊥B; DM⊥AC)
BD=MD(ΔABD=ΔAMD)
góc BDN=MDC(2 góc dối đỉnh)
⇒ ΔBND=ΔMCD(g.c.g)
⇒BN=MC(2 cạnh tương ứng)
Có: AB+BN=AN và AM+MC=AC
Mà AB=AM(ΔABD=ΔAMD) và BN=MC (CMT)
⇒AN =AC
⇒ΔANC cân
Lại có góc A =60 độ
⇒ΔANC đều
(hình vẽ minh họa)
d)CÓ: AD là tia phân giác góc BAC
⇒góc BAD= góc CAD=1/2 góc BAC=1/2 . 60độ=30 độ
⇒góc BAI=30độ
Lại có: góc NBD=90độ(ΔABC⊥B)
⇒BI<ND(quan hệ giữa góc và cạnh đối diện)
a: OM//AH
ON//BH
MN//AB
=>góc BAH=góc OMN và góc ABH=góc ONM
=>ΔABH đồng dạng vơi ΔMNO
b: G là trọng tâm của ΔABC
=>GM/GA=1/2
ΔABH đồng dạng với ΔMNO nên OM/AH=MN/AB=1/2
=>OM/AH=MG/AG
=>ΔHAG đồng dạng với ΔOMG
c: ΔHAG đồng dạng với ΔOMG
=>góc AGH=góc OGM và GH/GO=GA/GM=2
=>H,G,O thẳng hàng và GH=2GO