K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2016

bạn zumi trần ơi đáp ám bài mày là 550 nhé

26 tháng 5 2022

\(A=\dfrac{\left(a+b\right)\left(-x-y\right)-\left(a-y\right)\left(b-x\right)}{abxy\left(xy+ay+ab+by\right)}\)

\(=\dfrac{a\left(-x-y\right)+b\left(-x-y\right)-a\left(b-x\right)+y\left(b-x\right)}{abxy\left(xy+ay+ab+by\right)}\)

\(=\dfrac{-ax-ay-bx-by-ab+ax+by-xy}{abxy\left(xy+ay+ab+by\right)}\)

\(=\dfrac{-ay-bx-ab-xy}{abxy\left(xy+ay+ab+by\right)}\)

\(=\dfrac{-xy+ay+ab+by}{abxy\left(xy+ay+ab+by\right)}=\dfrac{-1}{abxy}\)

Với \(a=\dfrac{1}{3};b=-2;x=\dfrac{3}{2};y=1\)

\(\Rightarrow A=\dfrac{-1}{\dfrac{1}{3}.\left(-2\right).\dfrac{3}{2}.1}=-1\)

22 tháng 9 2016

\(C=\left(a+b\right)\left(a+1\right)\left(b+1\right)\)

\(\Leftrightarrow C=3\left(a+1\right)\left(b+1\right)\)

\(\Leftrightarrow C=\left(3a+1\right)\left(b+1\right)\)

\(\Leftrightarrow C=3a\left(b+1\right)+3\left(b+1\right)\)

\(\Leftrightarrow C=3ab+3a+3b+3\)

\(\Leftrightarrow C=3ab+3\left(a+b\right)+3\)

\(\Leftrightarrow C=3.\left(-5\right)+3.3+3\)

\(\Leftrightarrow C=\left(-15\right)+9+3\)

\(\Leftrightarrow C=\left(-3\right)\)

Vậy \(C=\left(-3\right)\)

22 tháng 9 2016

- Chết cmnr :)) T làm nhầm 1 chỗ

Làm lại nè:

\(\Leftrightarrow C=3\left(a+1\right)\left(b+1\right)\)

\(\Leftrightarrow C=\left(3a+3\right)\left(b+1\right)\)

\(\Leftrightarrow C=3a\left(b+1\right)+3\left(b+1\right)\)

\(\Leftrightarrow C=3ab+3a+3b+3\)

\(\Leftrightarrow C=3.\left(-5\right)+3\left(a+b\right)+3\)

\(\Leftrightarrow C=\left(-15\right)+3.3+3\)

\(\Leftrightarrow C=\left(-15\right)+9+3\)

\(\Leftrightarrow C=\left(-3\right)\)

p/s : Không hiểu mắt tớ bị hỏng chỗ nào mà số 3 viết thành 1 nhưng đáp án vẫn đúng =))

19 tháng 8 2018

Nhân khai triển tử và mẫu của B, thấy ab + bc + ca thì thay bằng 1

NV
9 tháng 1

Ta có:

\(a+b+c-abc=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+c\left(a+b\right)\right)-abc\)

\(=\left(a+b\right)ab+\left(a+b\right)^2c+abc+c^2\left(a+b\right)-abc\)

\(=\left(a+b\right)\left(ab+c^2+c\left(a+b\right)\right)\)

\(=\left(a+b\right)\left(ab+ac+c^2+bc\right)\)

\(=\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)

\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

Đồng thời:

\(a^2+1=a^2+ab+bc+ac=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)

Tương tự:

\(b^2+1=\left(a+b\right)\left(b+c\right)\)

\(c^2+1=\left(a+c\right)\left(b+c\right)\)

Từ đó:

\(P=\dfrac{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)}\)

\(=\dfrac{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}=1\)

28 tháng 10 2021

\(M=\dfrac{a\sqrt{a}-b\sqrt{b}-a\sqrt{a}+a\sqrt{b}+b\sqrt{a}+b\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\\ M=\dfrac{a\sqrt{b}+b\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\\ M=\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)

\(\left(1-a\right)\left(1-b\right)+2\sqrt{ab}=1\\ \Leftrightarrow1-a-b+ab+2\sqrt{ab}=1\\ \Leftrightarrow a+b-ab-2\sqrt{ab}=0\\ \Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2=ab\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{a}-\sqrt{b}=\sqrt{ab}\\\sqrt{a}-\sqrt{b}=-\sqrt{ab}\end{matrix}\right.\)

Với \(\sqrt{a}-\sqrt{b}=\sqrt{ab}\Leftrightarrow M=\dfrac{\sqrt{ab}}{\sqrt{ab}}=1\)

Với \(\sqrt{a}-\sqrt{b}=-\sqrt{ab}\Leftrightarrow M=\dfrac{\sqrt{ab}}{-\sqrt{ab}}=-1\)

28 tháng 10 2021

\(M=\dfrac{a\sqrt{a}-b\sqrt{b}-a\left(\sqrt{a}-\sqrt{b}\right)+b\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{a\sqrt{b}+b\sqrt{a}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)

\(\left(1-a\right)\left(1-b\right)+2\sqrt{ab}=1\)

\(\Leftrightarrow a+b-ab-2\sqrt{ab}=0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2=ab\Leftrightarrow\sqrt{a}-\sqrt{b}=\sqrt{ab}\)

\(M=\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}=\dfrac{\sqrt{ab}}{\sqrt{ab}}=1\)