K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2021

A= 1+7+72+73+...+7101+7101 
A=(1+7)+(72+73)+...+(7100+7101)
A=8+72*(1+7)+...+7100*(1+7)
A=8+72*8+...+8*7100
A=8(1+72+...7100)
     A chia hết cho 8
 

A= 1+7+72+73+...+7101+7101

A= (1+7)+(72+73)+...+(7101+7102)

A=8+72.8+...+7101.8

A=8.(1+72+...+710

vậy A chia hết cho 8

HT

\(A=\left(1+7\right)+...+7^{2020}\left(1+7\right)=8\left(1+...+7^{2020}\right)⋮8\)

10 tháng 1 2022

\(A = (1 + 7) +...+7^2\)\(^0\)\(^2\)\(^0\) \((1 + 7) = 8 (1+...+7^2\)\(^0\)\(^2\)\(^0\)\() \) ⋮\(8\)

23 tháng 12 2021

\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)=7.57+7^4.57+...+7^{118}.57=57\left(7+7^4+...+7^{118}\right)⋮57\)

AH
Akai Haruma
Giáo viên
23 tháng 12 2021

Lời giải:
$A=(7+7^2+7^3)+(7^4+7^5+7^6)+....+(7^{118}+7^{119}+7^{120})$
$=7(1+7+7^2)+7^4(1+7+7^2)+...+7^{118}(1+7+7^2)$

$=7.57+7^4.57+...+7^{118}.57$

$=57(7+7^4+...+7^{118})\vdots 57$ 

Ta có đpcm.

28 tháng 12 2024

A = 7 + 72 + 73 + ... + 7119 + 7120

A = (71 + 72 + 73) + (74 + 75 + 76) + ... + (7118 + 7119 + 7120)

A = 7(1 + 7 + 72) + 74(1 + 7 + 72) + ... + 7118(1 + 7 + 72)

A = 7.57 + 74.57 + ... + 7118.57

A = 57(7 + 74 + ... + 7118)

Vì 57 ⋮ 57 nên 57(7 + 74 + ... + 7118) ⋮ 57

1 tháng 11 2017

trả lời giúp mk với

20 tháng 11 2017

a bằng 14

b bằng 26

c bằng 15

3 tháng 2 2017

ko biết làm

30 tháng 11 2016

Ta có :

A chia hết cho 8 vì mọi số hạng của A deduf chia hết cho 8 .

\(A=8+2^2+....+8^{2019}\)

\(\Rightarrow A=8\left(1+8\right)+.....+8^{2018}\left(1+8\right)\)

\(\Rightarrow A=8.9+.....+8^{2018}.9\)

=> A chia hết cho 9 .

Mà (8;9)=1

=> A chia hết cho 8x9=72

\(A=8\left(1+8+8^2\right)+....+8^{2017}\left(1+8+8^2\right)\)

\(A=8.73+....+8^{2017}.73\)

=> A chia hết cho 73

30 tháng 11 2016

Các bạn trả lời gấp giúp mình nhá!!!

12 tháng 12 2016

A = 8 + 8^2 +8^3 +...+ 8^58+8^59+8^60

   = (8+8^2 + 8^3) +...+ (8^58+8^59 +8^60)

   =8( 1+8+8^2)+...+8^58(1+8+8^2)

   = 8. 73 + ......+8^58 .73

   = 73.( 8+...+8^58) chia hết cho 73

15 tháng 10 2021

b) Để 4x + 19 chia hết cho x + 1 thì 15 chia hết cho x + 1

--> x + 1 là ước của 15

TH1: x + 1 = 15 <=> x = 14

TH2: x + 1 = 1 <=> x = 0

TH3: x + 1 = 3 <=> x = 2

TH4: x + 1 = 5 <=> x= 4

28 tháng 12 2022

\(A=7+7^2+7^3+...+7^{120}\\ A=\left(7+7^2+7^3\right)+...+\left(7^{118}+7^{119}+7^{120}\right)\\ A=7\times\left(1+7+7^2\right)+...+7^{118}\times\left(1+7+7^2\right)\\ A=7\times57+7^4\times57+...+7^{118}\times57\\ A=57\times\left(7+7^4+...+7^{118}\right)\\ \Rightarrow A⋮57\)

28 tháng 12 2024

A = 7 + 72 + 73 + ... + 7119 + 7120

A = (71 + 72 + 73) + (74 + 75 + 76) + ... + (7118 + 7119 + 7120)

A = 7(1 + 7 + 72) + 74(1 + 7 + 72) + ... + 7118(1 + 7 + 72)

A = 7.57 + 74.57 + ... + 7118.57

A = 57(7 + 74 + ... + 7118)

Vì 57 ⋮ 57 nên 57(7 + 74 + ... + 7118) ⋮ 57