Cho a,b thuộc Z,(6a+11b)chia hết cho 31. Chứng minh(a+7b)chia hết cho 31?Điều ngược lại có đúng không?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi ab là xy
6x+11y chia hế
31y chia hết cho 31 ﴾vì 31y cũng chia hết cho 31﴿
=> 6x + 42y chia hết cho 31
=> 6﴾x+7y﴿ chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên
x+7y buộc phải chia hết cho 31 ﴾ĐPCM﴿
Xét tổng: 5(6a + 11b) + (a + 7b) = 30a + 55b + a + 7b = 31a + 62b = 31(a + 2b) chia hết cho 31
=> 5(6a + 11b) + (a + 7b) chia hết cho 31 (1)
+ Chứng minh chiều xuôi (=>) (Tức có 6a + 11b chia hết cho 31, cm a + 7b chia hết cho 31)
Ta có: 6a + 11b chia hết cho 31
=> 5(6a + 11b) chia hết cho 31, Kết hợp với (1) đc: a + 7b chia hết cho 31
+
+ Chứng minh chiều ngược (<=) (Tức có a + 7b chia hết cho 31, cm 6a + 11b chia hết cho 31)
Ta có: a + 7b chia hết cho 31. Kết hợp với (1) đc: 5(6a + 11b) chia hết cho 31
Mà ƯCLN(5,31) = 1
=> 6a + 11b chia hết cho 31
Vậy : 6a + 11b chia hết cho 31 <=> a + 7b chia hết cho 31
Ta có 6a + 11b chia hết cho 31
Vậy: 6a + 42b - 31b = 6x(a+7b) - 31xb chia hết cho 31
nên: 6x(a + 7b) chia hết cho 31
Do vậy: a + 7b chia hết cho 31 (đpcm)