Cho tứ giác ABCD. Có bao nhiêu vectơ khác vectơ - không có điểm đầu và cuối là các đỉnh của tứ giác?
A. 4
B. 6
C. 8
D. 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
Một vectơ khác vectơ không được xác định bởi 2 điểm phân biệt.
Từ 4 điểm ban đầu ta có 4 cách chọn điểm đầu và 3 cách chọn điểm cuối.
Do đó; có tất cả 4.3= 12 vecto được tạo ra.
Một vectơ khác vectơ không được xác định bởi 2 điểm phân biệt.
Từ 4 điểm ban đầu ta có 4 cách chọn điểm đầu và 3 cách chọn điểm cuối.
Do đó; có tất cả 4.3= 12 vecto được tạo ra.
Chọn D
Số các véc tơ tạo thành từ 4 điểm A, B, C, D đúng bằng số đoạn thẳng tạo thàng từ 4 điểm đó nhân với 2.
Số đoạn thẳng là: \(4.3:2=6\) (đoạn).
Số véc tơ là: 6.2 = 12 (véc tơ).
Tổng quát:
Số véc tơ tạo thành từ n điểm là: \(n\left(n-1\right)\) (véc tơ).
Đáp án A.
Với mỗi cách chọn ra 2 đỉnh bất kỳ của tứ diện ta được 2 vecto đối nhau.
Do đó có 2 C 4 2 = 12 vecto.
Chọn A
Số vectơ khác vectơ 0 → mà mỗi vectơ có điểm đầu, điểm cuối là hai đỉnh của tứ diện ABCD là số các chỉnh hợp chập 2 của phần tử => số vectơ là A 4 2 = 12
Đáp án A.
Với mỗi cách chọn ra 2 đỉnh bất kỳ của tứ diện ta được 2 vecto đối nhau.
Do đó có 2 C 4 2 = 12 vecto.
Câu 5:
D. Các vector \(\overrightarrow{AB}, \overrightarrow{BA}, \overrightarrow{AC}, \overrightarrow{CA}, \overrightarrow{BC}, \overrightarrow{CB}\)
Xét các vectơ có điểm A là điểm đầu thì có các vectơ thỏa mãn bài toán là A B → , A C → , A D → nên có 3 vectơ.
Tương tự cho các điểm còn lại B; C; D
Có tất cả: 3+ 3+ 3+ 3 =12 vecto thỏa mãn.
Chọn D.