Cho u → = 1 / 2 ; - 5 ; v → ( m ; 4 ) . Hai vectơ u → và v → cùng phương khi m bằng:
A. 1/2
B. 5/2
C. - 2/5
D. 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Xét 1/k^2 = 1/(k.k) < 1/[k(k - 1)] = 1/(k - 1) - 1/k
Do đó :
1/2^2 < 1/1 - 1/2
1/3^2 < 1/2 - 1/3
...
1/n^2 < 1//(n - 1) - 1/n
Suy ra :
1+ (1/2^2+1/3^2+...+1/n^2) < 1 + (1/1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + .. + [1/(n - 1) - 1/n] = 2 - 1/n < 2 (đpcm)
2) Đặt A = (u+1/u)^2 + (v+1/v)^2
Áp dụng BĐT 2(a^2 + b^2) >= (a + b)^2 (dễ cm BĐT này)
Ta có : 2A = 2[(u+1/u)^2 + (v+1/v)^2] >= (u + 1/u + v + 1/v)^2 = (1 + 1/u + 1/v)^2 (vì u + v = 1) (1)
Nhận xét rằng ta có (u + v)(1/u + 1/v) >= 4 (cũng dễ cm được BĐT này)
=> 1/u + 1/v >= 4 (do u + v = 1)
=> (1 + 1/u + 1/v)^2 >= (1 + 4)^2 = 25 (2)
Từ (1)(2) ta có 2A >= 25 hay A >= 25/2 (đpcm)
Đẳng thức xảy ra khi u = v = 1/2
Sử dụng BĐT Svacxo ta được :
\(LHS\ge\frac{\left(u+\frac{1}{u}+v+\frac{1}{v}\right)^2}{2}=\frac{\left(1+\frac{1}{u}+\frac{1}{v}\right)^2}{2}\)
Lại tiếp tục sử dụng BĐT Svacxo ta được :
\(\frac{1}{u}+\frac{1}{v}=\frac{1^2}{u}+\frac{1^2}{v}=\frac{\left(1+1\right)^2}{u+v}=\frac{4}{u+v}=4\)
Khi đó \(\frac{\left(1+\frac{1}{u}+\frac{1}{v}\right)^2}{2}\ge\frac{\left(1+4\right)^2}{2}=\frac{5^2}{2}=\frac{25}{2}\)
Đẳng thức xảy ra khi và chỉ khi \(u=v=\frac{1}{2}\)
Vậy ta có điều phải chứng minh
Bài 1 :
\(\frac{3n+2}{n+1}=\frac{3\left(x+1\right)-1}{n+1}=\frac{-1}{n+1}\)
=> n + 1 \(\in\)Ư(-1) = {1;-1}
Tự lập bảng xét giá trị bn nhé !
Bài 2 :
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1+2y}{6}\)
\(\Leftrightarrow30=x\left(1+2y\right)\)
Tự lập bảng nhé !
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2014^2}\)
\(\Rightarrow A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)
\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{2}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(\Rightarrow A< 1+1-\frac{1}{2014}\)
\(\Rightarrow A< 2-\frac{1}{2014}< 2\)
Vậy A < 2 (đpcm)
2/ Áp dụng BĐT Bunhiacopxki \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(\Leftrightarrow a^2x^2+b^2y^2+2abxy\le a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
\(\Leftrightarrow bx^2+ay^2-2abxy\ge0\)
\(\Leftrightarrow\left(bx-ay\right)^2\ge0\)(đúng) Dấu "=" xảy ra khi x/a=y/b
Ta có: \(\left(x+4y\right)^2\le\left(1^2+2^2\right)\left(x^2+4y^2\right)=5\left(x^2+4y^2\right)\)
Mà a + 4b = 1
\(\Rightarrow x^2+4y^2\ge\frac{1}{5}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{1}{x}=\frac{2}{2y}=\frac{1}{y}\\x+4y=1\end{cases}}\Rightarrow x=y=\frac{1}{5}\)
bài tập đội tuyển hay chuyên đề vậy?
Có A=1+ 1/2+1/3+... +1/2^10-1
<=> 2-1+1-1/2+1/2-1/3+...- 1/2^10-1
<=> 2-1/2^10-1
Mà 1/2^10-1 < 1 => 2-1/2^10-1 <2
=> A<10
Để 2 vecto đã cho cùng phương khi tồn tại số k sao cho:
u → = k . v → ⇔ 1 2 = k . m − 5 = k .4 ⇔ m = − 2 5 k = − 5 4
Đáp án C