Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^{2019}-2020x^{2018}+2020x^{2017}-2020x^{2016}+...+2020x-2020\)
\(=x^{2019}-2019x^{2018}-x^{2018}+2019x^{2017}+x^{2017}\)
\(-2019x^{2016}-x^{2016}+...+2019x+x-2020\)
\(=x^{2018}\left(x-2019\right)-x^{2017}\left(x-2019\right)+x^{2016}\left(x-2019\right)\)
\(+...-x\left(x-2019\right)+\left(x-2019\right)-1\)
\(=-1\)
\(D=4x^2-2x+3x\left(x-5\right)=4x^2-2x+3x^2-15x=7x^2-17x=7\left(-1\right)^2-17\left(-1\right)=24\)
\(E=x^{10}-2020x^9+2020x^8-2020x^7+...+2020x^2-2020x=x^9\left(x-2019\right)-x^8\left(x-2019\right)+x^7\left(x-2019\right)-...-x^2\left(x-2019\right)+x\left(x-2019\right)-x=x^9\left(2019-2019\right)-...+x\left(2019-2019\right)-2019=-2019\)
f(x) = \(\left(x^6-2019x^5\right)-\left(x^5-2019x^4\right)+\left(x^4-2019x^3\right)-\left(x^3-2019x^2\right)+\left(x^2-2019x\right)-\left(x-2019\right)+1\)
= \(x^5\left(x-2019\right)-x^4\left(x-2019\right)+x^3\left(x-2019\right)-x^2\left(x-2019\right)+x\left(x-2019\right)-\left(x-2019\right)+1\)
Thay x = 2019 vào f(x), ta có:
f(2019) = 0 + 0 + 0 + 0 + 0 +0 + 1 = 1
\(f\left(2019\right)=x^{100}-\left(2019+1\right)x^{99}+\left(2019+1\right)x^{98}-....+\left(2019+1\right)x^2-\left(2019+1\right)x+2000\)
\(=x^{100}-\left(x+1\right)x^{99}+\left(x+1\right)x^{98}-...+\left(x+1\right)x^2-\left(x+1\right)x+2000\)
\(=x^{100}-x^{100}-x^{99}+x^{99}+x^{98}-...+x^3+x^2-x^2-x+2000\)
\(=-x+2000=-2019+2000\)
\(=-19\)