Tìm số hạng chứa x 3 trong khai triển x + 1 2 x 9 .
A. − 1 8 C 9 3 x 3 .
B. 1 8 C 9 3 x 3 .
C. − C 9 3 x 3 .
D. C 9 3 x 3 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 8 là \(\left(8a^2-\dfrac{1}{2}b\right)^6\) hay \(\left(8a^2-\dfrac{1}{2b}\right)^6\) bạn? (tốt nhất là bạn dùng tính năng gõ công thức toán để đăng đề, hoặc chụp hình gửi đề trực tiếp lên, hiện nay hoc24 đã cho đăng đề bằng hình ảnh)
9.
\(\left(x+8.x^{-2}\right)^9=\sum\limits^9_{k=0}C_9^kx^{9-k}.8^k.x^{-2k}=\sum\limits^9_{k=0}C_9^k8^kx^{9-3k}\)
Số hạng ko chứa x \(\Rightarrow9-3k=0\Rightarrow k=3\)
Số hạng đó là: \(C_9^3.8^3=...\)
15/ Mũ 4=> có 4+1=5 số hạng=> số hạng chính giữa là: \(C^2_4.3^{4-2}.x^2.2^2y^2=58x^2y^2\)
18/ \(x.x^k=x^7\Rightarrow k=6\)
\(C^6_9.3^6.2^3=489888\)
19/ \(C^7_7+C^7_8.\left(-1\right)^7+C^7_9.2^2=...\)
C18 , c19 là lm sao vậy ạ ? Mk ko hiểu 2 bài này nơi
\(\left(x^2-x^3+1\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(x^2-x^3\right)^k=\sum\limits^{10}_{k=0}C_{10}^k\sum\limits^k_{i=0}C_k^i.\left(x^2\right)^i.\left(-x^3\right)^{k-i}\)
\(=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^k.C_k^i.\left(-1\right)^{k-i}.x^{3k-i}\)
Số hạng chứa \(x^{10}\) thỏa mãn:
\(\left\{{}\begin{matrix}0\le k\le0\\0\le i\le k\\3k-i=10\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(2;4\right);\left(5;5\right)\)
\(\Rightarrow\) Hệ số: \(C_{10}^4.C_4^2+C_{10}^5.C_5^5=...\)
a: SHTQ là: \(C^k_{10}\cdot x^{10-k}\cdot\left(\dfrac{2}{x}\right)^k=C^k_{10}\cdot2^k\cdot x^{10-2k}\)
Số hạng ko chứa x tương ứng với 10-2k=0
=>k=5
=>SH đó là 8064
b: SHTQ là; \(C^k_6\cdot x^{6-k}\cdot\left(\dfrac{2}{x^2}\right)^k=C^k_6\cdot2^k\cdot x^{6-3k}\)
Số hạng ko chứa x tương ứng với 6-3k=0
=>k=2
=>Số hạng đó là 60
c: SHTQ là: \(C^k_5\cdot\left(3x^3\right)^{5-k}\cdot\left(-\dfrac{2}{x^2}\right)^k\)
\(=C^k_5\cdot3^{5-k}\cdot\left(-2\right)^k\cdot x^{15-5k}\)
SH chứa x^10 tương ứng với 15-5k=10
=>k=1
=>Hệ số là -810
Làm xong rồi nhấn gửi thì lỗi, làm lại từ đầu nên chỉ làm 2 câu thôi, 2 câu sau bạn tự làm tương tự:
a/ \(\sum\limits^8_{k=0}C_8^kx^{2k}\left(1-x\right)^k=\sum\limits^8_{k=0}\sum\limits^k_{i=0}C_8^kC_k^i\left(-1\right)^ix^{2k+i}\)
Số hạng chứa \(x^8\) có:
\(\left\{{}\begin{matrix}2k+i=8\\0\le i\le k\le8\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;4\right);\left(2;3\right)\)
Hệ số: \(C_8^4C_4^0.\left(-1\right)^0+C_8^3C_3^2.\left(-1\right)^2\)
b/ \(1+x+x^2+x^3=\left(1+x\right)\left(1+x^2\right)\)
\(\Rightarrow\left(1+x+x^2+x^3\right)^{10}=\left(1+x\right)^{10}\left(1+x^2\right)^{10}\)
\(=\sum\limits^{10}_{k=0}C_{10}^kx^k\sum\limits^{10}_{i=0}C_{10}^ix^{2i}=\sum\limits^{10}_{k=0}\sum\limits^{10}_{i=0}C_{10}^kC_{10}^ix^{2i+k}\)
Số hạng chứa \(x^5\) có:
\(\left\{{}\begin{matrix}2i+k=5\\0\le k\le10\\0\le i\le10\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;5\right);\left(1;3\right);\left(2;1\right)\)
Hệ số: \(C_{10}^0C_{10}^5+C_{10}^1C_{10}^3+C_{10}^2C_{10}^1\)
Ta có: (x3 + )8= Ck8 x3(8 – k) ()k = Ck8 x24 – 4k
Trong tổng này, số hạng Ck8 x24 – 4k không chứa x khi và chỉ khi
⇔ k = 6.
Vậy số hạng không chứa x trong khai triển (theo công thức nhị thức Niu - Tơn) của biểu thức đã cho là C68 = 28.
Số hạng trong khai triển có dạng :
\(T_{k+1}=C_6^k.\left(x^2\right)^{6-k}.\left(x^{-1}\right)^k\)
\(=C_6^k.x^{12-2k}.x^{-k}\)
\(=C_6^k.x^{12-3k}\)
Số hạng chứa \(x^9\): \(\Leftrightarrow x^{12-3k}=x^9\)
\(\Leftrightarrow12-3k=9\)
\(\Leftrightarrow3k=12-9\)
\(\Leftrightarrow3k=3\)
\(\Leftrightarrow k=1\)
Hệ số của số hạng chứa \(x^9\)là : \(T_2=C^1_6=6\)
tìm số hạng chứa x\(^{15}\) trong khai triển : (2x\(^3\) - \(\dfrac{1}{4x^2}\))\(^{40}\) (x\(\ne\)0)
Khai triển \(\left(2x^3-\dfrac{1}{4}x^{-2}\right)^{40}\) có số hạng tổng quát:
\(C_{40}^k\left(2x^3\right)^k\left(\dfrac{1}{4}\right)^{40-k}.\left(x^{-2}\right)^{40-k}=C_{40}^k2^k.4^{k-40}.x^{5k-80}\)
Số hạng chứa\(x^{15}\Rightarrow5k-80=15\Leftrightarrow k=19\)
Số hạng đó là: \(C_{40}^{19}2^{19}.4^{-21}x^{15}=C_{40}^{19}.\dfrac{1}{2^{23}}.x^{15}\)
Theo khai triển nhị thức Niu-tơn, ta có
x + 1 2 x 9 = ∑ k = 0 9 C 9 k . x 9 − k . 1 2 x k = ∑ k = 0 9 C 9 k . 1 2 k . x 9 − 2 k .
Hệ số của x 3 ứng với 9 − 2 k = 3 ⇔ k = 3
Vậy số hạng cần tìm 1 8 C 9 3 x 3 .
Chọn đáp án B.