Cho tứ diện ABCD. Giả sử M thuộc đoạn BC. Một mặt (∝) qua M song song với AB và CD. Thiết diện của (∝) và hình tứ diện ABCD là hình gì?
A. Hình thang có đúng một cặp cạnh song song
B. Hình bình hành
C. Hình tam giác
D. Hình ngũ giác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(∝) // (AB) nên giao tuyến của (∝) với (ABC) là đường thẳng qua M, song song với AB, cắt BC tại P.
(∝) // AD nên giao tuyến của (∝) với (ADC) là đường thẳng qua M, song song với AD, cắt DC tại N.
Vậy thiết diện là tam giác MNP.
Đáp án A
(∝) // AB nên giao tuyến của (∝) với (ABC) là đường thẳng qua M, song song với AB cắt BC tại P.
(∝) // AD nên giao tuyến của (∝) với (ADC) là đường thẳng qua M, song song với AD, cắt DC tại N.
Vậy thiết diện là tam giác MNP.
Đáp án A
a) + (α) // AC
⇒ Giao tuyến của (α) và (ABC) là đường thẳng song song với AC.
Mà M ∈ (ABC) ∩ (α).
⇒ (ABC) ∩ (α) = MN là đường thẳng qua M, song song với AC (N ∈ BC).
+ Tương tự (α) ∩ (ABD) = MQ là đường thẳng qua M song song với BD (Q ∈ AD).
+ (α) ∩ (BCD) = NP là đường thẳng qua N song song với BD (P ∈ CD).
+ (α) ∩ (ACD) = QP.
b)Ta có:
Suy ra, tứ giác MNPQ có các cạnh đối song song với nhau nên tứ giác MNPQ là hình bình hành.
(∝) // AB nên giao tuyến của (∝) với (ABC) là đường thẳng đi qua M, song song với AB và cắt AC tại Q.
(∝) // CD nên giao tuyến của (∝) với (BCD) là đường thẳng đi qua M, song song với CD và cắt BD tại N.
(∝) // AB nên giao tuyến của (∝) với (ABD) là đường thẳng đi qua N, song song với AB và cắt AD tại P.
Ta có: MN // PQ // CD, MQ // PN // AB.
Vậy thiết diện là hình bình hành MNPQ.
Đáp án B.