Cho tam giác ABC có BC = 1cm, AC = 8cm và độ dài cạnh AB là một số nguyên (cm). Tam giác ABC là tam giác gì?
A. Tam giác vuông tại A
B. Tam giác cân tại A
C. Tam giác vuông cân tại A
D. Tam giác cân tại B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tg HAB và tg HAC có AB=AC(gt);góc AHB=góc AHC(=90 độ),chung AH
=>tg HAB và tg HAC bằng nhau (c.g.c)
b)=>HB=HC =>H là tđ BC. ta có tg ABH vuông tại H
=>AB^2=BH^2+AH^2 ( do H là tđ BC(cmt) vàBC=16cm(gt))+định lí pytago
hay 10^2=8^2+AH^2
AH^2=36
=> AH=6
c)có tg hab=tg hac=>bah=cah
xét tg eah và tg fah có: chung ah
bah=cah(cmt)
aeh=afh
=>tg eah=tg fah =>af=ae.MÀ ab=ac(gt)=>fc=be
=>tg hbe=tg hcf(c.g.c)
d)cmt.có af=fe(cmt)=>tgaef cân
k dúng mình cái mình làm bài này mệt lắm r
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
Gọi độ dài cạnh AB là x (x>0). Theo bất đẳng thức tam giác ta có:
8 − 1 < x < 8 + 1 ⇔ 7 < x < 9 Vì x là số nguyên nên x = 8. Vậy độ dài cạnh AB = 8cm
Tam giác ABC có AB = AC = 8cm nên tam giác ABC cân tại A.
Chọn đáp án B.