Cho tam giác ABC có cạnh A B = 8 c m , B C = 8 c m , A C = 7 c m . So sánh các góc của tam giác ABC
A. ∠A > ∠B = ∠C
B. ∠A > ∠C > ∠B
C. ∠C > ∠B > ∠A
D. ∠C = ∠A > ∠B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc C<góc B
=>AB<AC
b: Xét ΔABM co AB=AM và góc A=60 độ
nên ΔAMB đều
a) Xét t/g ABD và t/g HBD có:
AB = BH (gt)
ABD = HBD ( vì BD là phân giác ABC)
BD là cạnh chung
Do đó, t/g ABD = t/g HBD (c.g.c)
=> BAD = BHD = 90o (2 góc tương ứng)
=> DH _|_ BC (đpcm)
b) t/g ABD = t/g HBD (câu a)
=> ADB = HDB (2 góc tương ứng)
Mà ADB + HDB = ADH = 110o
Do đó, ADB = HDB = 110o : 2 = 55o
t/g ABD vuông tại A có: ABD + ADB = 90o
=> ABD + 55o = 90o
=> ABD = 90o - 55o = 35o
k nhé
a: Xét ΔCAI vuông tại A và ΔCHi vuông tại H có
CI chung
góc ACI=góc HCI
=>ΔCAI=ΔCHI
=>IA=IH
b: IA=IH
IH<IB
=>IA<IB
c: Xét ΔCAB có
K là giao điểm của hai tia phân giác góc ngoài tại đỉnh A,B
=>CK là phân giác của góc ACB
=>C,I,K thẳng hàng
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
=>DA=DE
=>D nằm trên đường trung trực của AE(1)
ta có: BA=BE
=>B nằm trên trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD\(\perp\)AE tại trung điểm của AE
c: Ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
Ta có: AH\(\perp\)BC
DE\(\perp\)BC
Do đó: AH//DE
d: Ta có: \(\widehat{EDC}+\widehat{ACB}=90^0\)(ΔEDC vuông tại E)
\(\widehat{ABC}+\widehat{ACB}=90^0\)(ΔABC vuông tại A)
Do đó: \(\widehat{EDC}=\widehat{ABC}\)
e: Xét ΔDAK vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADK}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAK=ΔDEC
=>AK=EC và DK=DC
Ta có: BA+AK=BK
BE+EC=BC
mà BA=BE và AK=EC
nên BK=BC
=>B nằm trên đường trung trực của KC(3)
Ta có: DK=DC
=>D nằm trên đường trung trực của KC(4)
Ta có: MK=MC
=>M nằm trên đường trung trực của KC(5)
Từ (3),(4),(5) suy ra B,D,M thẳng hàng
d)
Xét tam giác AMB có ABM<AMB(60 độ < 80 độ)
=>AM<AB (1)
Xét tam giác DAB có ADB<DAB( 70 độ<80 đô)
=> AB<BD (2)
Từ (1) và (2)
=> AM<BD ( đpcm)
Còn vẽ hình bạn tự vẽ nha, cũng không khó lắm đâu, vẽ trên máy tính thì khó thôi)
a) C=180-80-60=40( độ)
Tam giác ABC có C<B<A
=> AB<AC<BC
b) Xét tam giác BAD và tam giác BMD có
BA=BM( giả thiết)
DBA=DBM ( vì tia BD là phân giác của góc ABC)
Cạnh BD cung
=> \(\Delta BAD=\Delta BMD\left(c.g.c\right)\)
c) Có \(\Delta BAD=\Delta BMD\)( theo câu b)
=>DA=DM ( 2 cạnh tương ứng)
Góc DAB= gócDMB ( 2 góc tương ứng) ( Xin OLM cho bổ sung vào hệ thống kí hiệu góc để viết cho tiện)
=> Góc DMC= góc DAH ( 2 góc kề bù của 2 góc bằng nhau)
Xét tam giác DAH và tam giác DMC có
góc CDM= góc HAD ( 2 góc đối đỉnh)
DA=DM
DAH=DMC
=>\(\Delta DAH=\Delta DMC\left(g.c.g\right)\)
=> DH=DC ( 2 cạnh tương ứng)
=> tam giác DHC cân tại D
Vì BD là phân giác của góc ABC nên góc DBA=góc DBM=60:2=30 độ
Có ADB=180-80-30=70 độ
MDB=180-80-30=70 độ ( vì góc DMB= góc DAB= 80 độ)
=> góc MDA=MDB+ADB=70+70=140 độ
Ta có CDH=MDA=140 độ ( 2 góc đối đỉnh)
=> DHC = \(\frac{180-140}{2}=20\) độ
Vì AB = BC > AC ⇒ ∠C = ∠A > ∠B . Chọn D