K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2021

a) Ta có \(\sin^2\alpha+\cos^2\alpha=1\Rightarrow\cos^2\alpha=1-\sin^2\alpha=1-\left(\frac{1}{4}\right)^2=1-\frac{1}{16}=\frac{15}{16}\)

\(\Rightarrow\cos\alpha=\sqrt{\frac{15}{16}}=\frac{\sqrt{15}}{4}\)

27 tháng 10 2023

a:\(a\cdot sin0+b\cdot cos0+c\cdot sin90\)

\(=a\cdot0+b\cdot1+c\cdot1\)

=b+c

b: \(a\cdot cos90+b\cdot sin90+c\cdot sin180\)

\(=a\cdot0+b\cdot1+c\cdot0\)

=b

c: \(a^2\cdot sin90+b^2\cdot cos90+c^2\cdot cos180\)

\(=a^2\cdot1+b^2\cdot0+c^2\left(-1\right)\)

\(=a^2-c^2\)

30 tháng 12 2018

Chọn C.

Ta có :

Áp dụng công thức cộng ta có:

sin(a – b) = sin a.cos b – cos a.sin b

                    

10 tháng 10 2023

Mn ơi cứu tui

24 tháng 7 2017

1. Ta có \(\tan a=3\Rightarrow\frac{\sin a}{\cos a}=3\Rightarrow\sin a=3\cos a\)

Vậy \(\frac{\cos a+\sin a}{\cos a-\sin a}=\frac{\cos a+3\cos a}{\cos a-3\cos a}=\frac{4\cos a}{-2\cos a}=-2\)

2.Ta có \(\sin^2a+\cos^2a=1\Rightarrow\cos^2a=1-\sin^2a=1-\frac{4}{9}=\frac{5}{9}\)

\(\Rightarrow\orbr{\begin{cases}\cos a=\frac{\sqrt{5}}{3}\\\cos a=\frac{-\sqrt{5}}{3}\end{cases}}\)

Với \(\cos a=\frac{\sqrt{5}}{3}\Rightarrow\tan a=\frac{\frac{2}{3}}{\frac{\sqrt{5}}{3}}=\frac{2\sqrt{5}}{5}\Rightarrow\cot a=\frac{1}{\tan a}=\frac{\sqrt{5}}{2}\)

Với \(\cos a=\frac{-\sqrt{5}}{2}\Rightarrow\tan a=\frac{-2\sqrt{5}}{5}\Rightarrow\cot a=-\frac{\sqrt{5}}{2}\)

3.  A B C H

Theo hệ thức  lượng trong tam giác vuông ta có \(AB^2=BH.BC\Leftrightarrow10^2=5.BC\Rightarrow BC=20\left(cm\right)\)

Theo định lí Pitago thì \(AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-10^2}=10\sqrt{3}\left(cm\right)\)

Ta có \(\tan B=\frac{AC}{AB}=\frac{10\sqrt{3}}{10}=\sqrt{3};\tan C=\frac{AB}{AC}=\frac{1}{\sqrt{3}}\)

Vậy \(\tan B=3\tan C\)

3 tháng 5 2021

b) \(\sin x+\cos x=\dfrac{3}{2}\)

\(\left(\sin x+\cos x\right)^2=\dfrac{1}{4}\)

\(\sin^2x+\cos^2x+2\sin x\cos x=\dfrac{1}{4}\)

\(2\sin x\cos x=-\dfrac{3}{4}=\sin2x\)

3 tháng 5 2021

ý a,

undefined

30 tháng 7 2016

cho online math

30 tháng 7 2016

Tôi không biết

AH
Akai Haruma
Giáo viên
13 tháng 8 2018

Lời giải:

a) Ta có tính chất quen thuộc là nếu \(\alpha+\beta=90^0\Rightarrow \cos \alpha=\sin \beta\)(có thể thấy rất rõ khi xét một tam giác vuông)

Tức là \(\sin \beta=\cos (90-\beta)\)

Do đó:

\(A=(\sin ^22^0+\sin ^288^0)+(\sin ^24^0+\sin ^286^0)+...+(\sin ^244^0+\sin ^246^0)\)

\(=\underbrace{(\sin ^22^0+\cos ^22^0)+(\sin ^24^0+\cos ^24^0)+...+(\sin ^244^0+\cos ^244^0)}_{22\text{cặp}}\)

\(=\underbrace{1+1+...+1}_{22}=22\) (tổng 2 bình phương sin và cos của một góc thì bằng 1)

b)

\(P=1994(\sin ^6x+\cos ^6x)-2991(\sin ^4x+\cos ^4x)\)

\(=1994[(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos^2 x+\cos ^4x)]-2991(\sin ^4x+\cos ^4x)\)

\(=1994(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)-2991(\sin ^4x+\cos ^4x)\)

\(=-1994\sin ^2x\cos ^2x-997\sin ^4x-997\cos ^4x\)

\(=-997(\sin ^4x+2\sin ^2x\cos ^2x+\cos ^4x) \)

\(=-997(\sin ^2x+\cos ^2x)^2=-997\)

Do đó biểu thức không phụ thuộc vào $x$