Chứng minh: S = 1 5 + 1 13 + 1 14 + 1 15 + 1 61 + 1 62 + 1 63 < 1 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{5}=\frac{1}{5}\)
\(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}<\frac{1}{12}.3=\frac{1}{4}\)
\(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}<\frac{1}{60}.3=\frac{1}{20}\)
=>S<\(\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)
=>\(S<\frac{1}{20}\)(đpcm)
Ta có: \(S=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)<\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{13}+\frac{1}{13}\right)+\left(\frac{1}{61}+\frac{1}{61}+\frac{1}{61}\right)\)\(\Rightarrow S<\frac{1}{5}+\frac{3}{13}+\frac{3}{61}<\frac{1}{5}+\frac{3}{12}+\frac{3}{60}=\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}<\frac{1}{5}+\frac{1}{13}.3+\frac{1}{61}.3\)
\(=\frac{1}{5}+\frac{3}{13}+\frac{3}{61}<\frac{1}{5}+\frac{3}{12}+\frac{3}{60}=\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)
\(\Rightarrowđpcm\)
Ta có:
S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)<1/5+1/12.3+1/60.3
=>S<1/5+1/4+1/20=10/20
Hay S<1/2
Ta có :
S = \(\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)<\frac{1}{5}+\frac{1}{12}x3+\frac{1}{60}x3\)
S < \(\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)
=> S < \(\frac{1}{2}\)
a) Ta có:
S = 1/5 + 1/13 + 1/14 + 1/15 + 1/61 + 1/62 + 1/63
Ta thấy:
1/13 < 1/12 ; 1/14 < 1/12 ; 1/15 < 1/12
=> 1/13 + 1/14 + 1/15 < 1/12 + 1/12 + 1/12 = 1/12 . 3 = 1/4 (1)
1/61 < 1/60 ; 1/62 < 1/60 ; 1/63 < 1/60
=> 1/61 + 1/62 + 1/63 < 1/60 + 1/60 + 1/60 = 1/60. 3 = 1/20 (2)
Từ (1) và (2)
=> 1/13 + 1/14 + 1/15 + 1/61 + 1/62 + 1/63 < 1/4 + 1/20
=>S = 1/5 + 1/13 + 1/14 + 1/15 + 1/61 + 1/62 + 1/63 < 1/4 + 1/20 + 1/5 = 5/20 + 1/20 + 4/20 = 10/20 = 1/2 (ĐPCM)
b) Ta có:
\(P=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\)
\(2P=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\)
\(2P-P=1+\frac{1}{2}-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^2}+...+\frac{1}{2^{19}}-\frac{1}{2^{19}}-\frac{1}{2^{20}}\)
\(P=1-\frac{1}{2^{20}}< 1\)
=> P < 1
S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)
(*)Ta có:
1/13<1/12
1/14<1/12
1/15<1/12
=>1/13+1/14+1/15<1/12
(*)Ta lại có:
1/61<1/60
1/62<1/60
1/63<1/60
=>1/61+1/62+1/63<1/60
=>S<1/5+1/12.3+1/60.3
S<1/5+1/4+1/20
S<1/2
S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)
(*)Ta có:
1/13<1/12
1/14<1/12
1/15<1/12
=>1/13+1/14+1/15<1/12
(*)Ta lại có:
1/61<1/60
1/62<1/60
1/63<1/60
=>1/61+1/62+1/63<1/60
=>S<1/5+1/12.3+1/60.3
S<1/5+1/4+1/20
S<1/2