K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2018

Với ba số a, b và c mà c > 0, ta có: Nếu a ≤ b thì ac ≤ bc

Khi đó, ta có: a + 1 ≤ b + 2 ⇒ 2( a + 1 ) ≤ 2( b + 2 ) ⇔ 2a + 2 ≤ 2b + 4.

Chọn đáp án C.

2 tháng 11 2019

Với ba số a, b và c mà c > 0, ta có: Nếu a ≤ b thì ac ≤ bc

Khi đó, ta có: a + 1 ≤ b + 2 ⇒ 2( a + 1 ) ≤ 2( b + 2 ) ⇔ 2a + 2 ≤ 2b + 4.

Chọn đáp án C.

4 tháng 5 2018

Nhân cả hai vế của bất đẳng thức a + 1 ≤ b + 2 với 2 > 0 ta được

2(a + 1) ≤ 2(b + 2) Û 2a + 2 ≤ 2b + 4.

Đáp án cần chọn là: D

16 tháng 5 2019

Nhân cả hai vế của bất đẳng thức a - 2 ≤ b - 1 với 2 > 0 ta được:

2(a - 2) ≤ 2(b - 1) Û 2a - 4 ≤ 2b - 2.

Đáp án cần chọn là: D

11 tháng 8 2021

\(P=\dfrac{4a^2}{4b+2c}+\dfrac{4b^2}{4a+2c}+\dfrac{c^2}{4a+4b}\ge\dfrac{\left(2a+2b+c\right)^2}{8a+8b+4c}\)

\(=\dfrac{\left(2a+2b+c\right)^2}{4\left(2a+2b+c\right)}=\dfrac{1}{4}\left(2a+2b+c\right)\)

15 tháng 10 2021

1.

\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)

Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)

Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)

Từ đó ta được đpcm

 

 

 

15 tháng 10 2021

uầy e đọc chả hỉu j lun :(

4 tháng 7 2015

a + b = c => (a + b)² = c² <=> a²+ b² + 2ab = c² 
=> c^4 = (a² + b² + 2ab)² 
=> c^4 = a^4 + b^4 + 6a²b² + 4a^3.b + 4a.b^3 

vậy: a^4 + b^4 + c^4 = 2a^4 + 2b^4 + 6a²b² + 4a^3.b + 4a.b^3 
= 2a^4 + 2a²b² + 4a^3.b + 2b^4 + 2a²b² + 4a.b^3 + 2a²b² 
= 2a²(a² + b² + 2ab) + 2b²(b² + a² + 2ab) + 2a²b² 
= 2a²(a + b)² + 2b²(a + b)² + 2a²b² 
= 2a²b² + 2(a + b)²(a² + b²) 
= 2a²b² + 2c²(a² +b²) 
= 2a²b² + 2b²c² + 2c²a² (đpcm) 

4 tháng 7 2015

 gt: a + b = c => (a + b)² = c² <=> a²+ b² + 2ab = c² 
=> c^4 = (a² + b² + 2ab)² 
=> c^4 = a^4 + b^4 + 6a²b² + 4a^3.b + 4a.b^3 

vậy: a^4 + b^4 + c^4 = 2a^4 + 2b^4 + 6a²b² + 4a^3.b + 4a.b^3 
= 2a^4 + 2a²b² + 4a^3.b + 2b^4 + 2a²b² + 4a.b^3 + 2a²b² 
= 2a²(a² + b² + 2ab) + 2b²(b² + a² + 2ab) + 2a²b² 
= 2a²(a + b)² + 2b²(a + b)² + 2a²b² 
= 2a²b² + 2(a + b)²(a² + b²) 
= 2a²b² + 2c²(a² +b²) 
= 2a²b² + 2b²c² + 2c²a² (đpcm)