Cho ad = bc ( c d ≠ 0 ; c 2 ≠ 3 d 2 ) . Khi đó a 2 − 3b 2 c 2 − 3d 2 bằng?
A. ab 2 cd 2
B. ad bc
C. ab cd
D. cd ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
a. Mẫu chung b.d > 0 (do b > 0; d > 0) nên nếu: thì da < bc
b. Ngược lại nếu a.d < b.c thì Ta có thể viết:
Bài 2: a. Chứng tỏ rằng nếu (b > 0; d > 0) thì
b. Hãy viết ba số hữu tỉ xen giữa và
a) a/b=ad/bd
c/d=cb/db
mà a/b<c/d=>ad/bd<cb/bd=>ad<bc
b)ad<bc=>ad/bd<bc/bd=> a/b<c/d
bài này tôi giải 2 câu thành 1 câu
Ta có :a/b=a.d/b.d ; c/d=b.c/b.d
vì b>0 , d>0 nên b.d>0, do đó :
nếu a/b<c/d thì a.d/d.b < b.c/b.d => a/b<c/d<=>a.d<b.c
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Ta có : \(\frac{a}{b}=\frac{ab}{bd},\frac{c}{d}=\frac{bc}{bd}\). Vì b > 0 , d > 0 nên bd > 0
a) Nếu \(\frac{a}{b}< \frac{c}{d}\)ta có : \(\frac{ad}{bd}< \frac{bc}{bd}\)hay ad < bc
b) Nếu ad < bc thì ta có : \(\frac{ad}{bd}< \frac{bc}{bd}\)hay \(\frac{a}{b}< \frac{c}{d}\)
Cho hai số hữu tỉ a/b và c/d ( b > 0, d > 0)
a) Nếu a/b < c/d thì ad < bc
b) Nếu ad < bc thì a/b < c/d
a) \(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow\dfrac{a}{b}-\dfrac{c}{d}< 0\Leftrightarrow\dfrac{ad-bc}{bd}< 0\)\(\Leftrightarrow ad-bc< 0\) ( do bc>0) \(\Leftrightarrow ad< bc\) (đpcm)
b) \(ad< bc\) \(\Leftrightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\) \(\Leftrightarrow\dfrac{a}{b}< \dfrac{c}{d}\)(đpcm)
a) Giả sử \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\)
nên nếu \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)
b) Ngược lại của câu a.
Để \(\dfrac{a}{b}\)<\(\dfrac{a+c}{b+d}\)thì a(b+d)<b(a+c) <=> ab+ad<ab+bc<=>ad<bc<=>\(\dfrac{a}{b}\)<\(\dfrac{c}{d}\)
Để \(\dfrac{a+c}{b+d}\)<\(\dfrac{c}{d}\)thì (a+c).d<(b+d).c<=> ad+cd<bc+cd<=>ad<bc<=>\(\dfrac{a}{b}\)<\(\dfrac{c}{d}\)