K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2018

Ta có

A   =   5 ( x   +   4 ) 2   +   4 ( x   –   5 ) 2   –   9 ( 4   +   x ) ( x   –   4 )     =   5 ( x 2   +   2 . x . 4   +   16 )   +   4 ( x 2   –   2 . x . 5   +   5 2 )   –   9 ( x 2   –   4 2 )     =   5 ( x 2   +   8 x   +   16 )   +   4 ( x 2   –   10 x   +   25 )   –   9 ( x 2   –   4 2 )     =   5 x 2   +   40 x   +   80   +   4 x 2   –   40 x   +   100   –   9 x 2   +   144     = ( 5 x 2   +   4 x 2   –   9 x 2 )   +   ( 40 x   –   40 x )   +   ( 80   + 100   +   144 )

 

= 324

Đáp án cần chọn là: C

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.

9 tháng 5 2021

\(x\ge-\dfrac{4}{5}\)

\(A=5x+2+\left|5x+4\right|=5x+2+5x+4=10x+6\)

\(x< -\dfrac{4}{5}\)

\(A=5x+2+\left|5x+4\right|=5x+2-5x+4=6\)

22 tháng 2 2022

`Answer:`

`a)`

`A=5(x+1)^2-3(x-3)^2-4(x^2-4)`

`=>A=5(x^2+2x+1)-3(x^2-6x+9)-4x^2+16`

`=>A=5x^2+10x+5-3x^2+18x-27-4x^2+16`

`=>A=(5x^2-3x^2-4x^2)+(10x+18x)+(5-27+16)`

`=>A=-2x^2+28x-6`

`b)`

`B=5(x+1)^2-3(x-3)^2-4(x+2)(x-2)`

`=2x(3x+5)-3(3x+5)-2x(x^2-4x+4)-[(2x)^2-3^2]`

`=6x^2+10x-9x-15-2x^3+8x^2-8x-4x^2+9`

`=(6x^2-4x^2+8x^2)-2x^3+(10x-9x-8x)+(-15+9)`

Thay `x=-7` vào ta được:

`B=10(-7)^2-2(-7)^3-7(-7)-6`

`=>B=10.49-2(-343)+49-6`

`=>B=490+686+49-6`

`=>B=1219`

24 tháng 5 2022

Với `x \ne -5,x \ne -1` có:

`A=[x+2]/[x+5]+[-5x-1]/[x^2+6x+5]-1/[1+x]`

`A=[(x+2)(x+1)-5x-1-(x+5)]/[(x+5)(x+1)]`

`A=[x^2+x+2x+2-5x-1-x-5]/[(x+5)(x+1)]`

`A=[x^2-3x-4]/[(x+5)(x+1)]`

`A=[(x-4)(x+1)]/[(x+5)(x+1)]`

`A=[x-4]/[x+5]`

24 tháng 5 2022

\(=\dfrac{x+2}{x+5}+\dfrac{-5x-1}{x^2+x+5x+5}-\dfrac{1}{x+1}\\ =\dfrac{x+2}{x+5}+\dfrac{-5x-1}{\left(x^2+x\right)+\left(5x+5\right)}-\dfrac{1}{x+1}\\ =\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+5\right)}+\dfrac{-5x-1}{x\left(x+1\right)+5\left(x+1\right)}-\dfrac{x+5}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+5\right)}+\dfrac{-5x-1}{\left(x+1\right)\left(x+5\right)}-\dfrac{x+5}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x^2+2x+x+2-5x-1-x-5}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x^2-3x-4}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x^2+x-4x-4}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{\left(x^2+x\right)-\left(4x+4\right)}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x\left(x+1\right)-4\left(x+1\right)}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{\left(x+1\right)\left(x-4\right)}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x-4}{x+5}\)

22 tháng 10 2023

1:

a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)

\(=4x^2-20x+25-4x^2-12x\)

=-32x+25

b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)

\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)

c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)

\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)

\(=\left(-3\right)^2+5\left(2x-3\right)\)

\(=9+10x-15=10x-6\)

2: 

a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)

\(=9x^2-12x+4-5x^2+20x+4x-4\)

\(=4x^2+12x\)

b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)

\(=27-x^3+x^3-9x^2+27x-27\)

\(=-9x^2+27x\)

c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)

\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)

\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)

\(=-5\left(x^2-16\right)=-5x^2+80\)

24 tháng 8 2019

 TL: Ko ghi lại đề

\(=x^2-25-x^3-8\)

\(=x^2-x^3-33\)

P/s: Áp dụng HĐT cơ bản 6  và  3

\(x\left(x+5\right)\left(x-5\right)-\left(x+2\right)\left(x^2-2x+4\right)\)

\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3+8\right)\)

\(\Leftrightarrow x^3-25x-x^3-8\)

\(\Leftrightarrow-25x-8\)

P/s tham khảo nhaaa

13 tháng 12 2021

=8x^2-4x+5

( cái nì tính ra r làm thui dễ mè:333

23 tháng 10 2021

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)

b: Ta có: \(D=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{5\sqrt{x}+5}{x-4}\right)\cdot\dfrac{x-4}{\sqrt{x}}\)

\(=\dfrac{x+4\sqrt{x}+4-x+4\sqrt{x}-5\sqrt{x}-5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{x-4}{\sqrt{x}}\)

\(=\dfrac{3\sqrt{x}-1}{\sqrt{x}}\)