Tìm a, b thuộc N biết: BCNN(a,b) + UCLN (a,b) = 14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
$14=ƯCLN(a,b)+3BCNN(a,b)\Rightarrow 3BCNN(a,b)< 14$
$\Rightarrow BCNN(a,b)< \frac{14}{3}$
$\Rightarrow a< \frac{14}{3}; b< \frac{14}{3}$
$\Rightarrow a+2b< \frac{14}{3}+2.\frac{14}{3}=14$
Mà $a+2b=48$ nên vô lý
Vậy không tồn tại $a,b$ thỏa mãn đề.
a) a=9*y
b=9*x
do đó a+b = 9*y+9*x=72
=9*(y+x)=72
x+y=8
ta có bảng sau
x+y | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
x | 1 | 7 | 3 | 5 | 4 | 2 | 6 |
y | 7 | 1 | 5 | 3 | 4 | 6 | 2 |
vậy (x,y) thuộc{1,7;7,1;3,5;5,3;4,4;2,6;6,2;}
b) a=14*x
b=14*y
a*b=7840=14*x*14*y
7840/14/14=x*y
x*y=40
ta có bảng sau: tương tự câu a
Em tham khảo tại link dưới đây nhé.
Câu hỏi của phạm văn quyết tâm - Toán lớp 6 - Học toán với OnlineMath
Câu 1 : \(\frac{a}{b}=\frac{42}{66}=\frac{7}{11}\Rightarrow a=7k;b=11k\) với \(k\in\) N*
ƯCLN(a ; b) = 36 => ƯCLN(7k ; 11k) = 36. Mà 7 và 11 nguyên tố cùng nhau nên k = 36
Vậy a = 36 x 7 = 252 ; b = 396.
Phân số phải tìm là \(\frac{252}{396}\)