K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)\(=\frac{x+y-z}{2+3-4}\)\(=\frac{2}{1}=2\)

=> x = 2.2 = 4

    y = 3.2 = 6

  z = 4.2 = 8

24 tháng 10 2017

mk ko bt 123

16 tháng 8 2023

gợi ý nè:

thử cộng chúng lại xem

16 tháng 8 2023

\(\dfrac{x}{y+z+1}\) = \(\dfrac{y}{x+z+2}\) = \(\dfrac{z}{x+y-3}\) = \(x+y+z\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{y+z+1}\)=\(\dfrac{y}{x+z+2}\)=\(\dfrac{z}{x+y-3}\)=\(\dfrac{x+y+z}{y+z+1+x+z+2+x+y-3}\)

\(x+y+z\) = \(\dfrac{x+y+z}{2.\left(x+y+z\right)}\) = \(\dfrac{1}{2}\) (1)

\(\dfrac{x}{y+z+1}\) = \(\dfrac{1}{2}\) ⇒ 2\(x\) = y+z+1 

⇒ 2\(x\) + \(x\) = \(x+y+z+1\) (2)

 Thay (1) vào (2) ta có: 2\(x\) + \(x\) = \(\dfrac{1}{2}\) + 1

                                      3\(x\)      = \(\dfrac{3}{2}\) ⇒ \(x=\dfrac{1}{2}\)

\(\dfrac{y}{x+z+2}\) = \(\dfrac{1}{2}\) ⇒ 2y = \(x+z+2\) ⇒ 2y+y = \(x+y+z+2\) (3)

Thay (1) vào (3) ta có: 2y + y = \(\dfrac{1}{2}\) + 2 

                                   3y = \(\dfrac{5}{2}\) ⇒ y = \(\dfrac{5}{6}\)

Thay \(x=\dfrac{1}{2};y=\dfrac{5}{6}\) vào (1) ta có: \(\dfrac{1}{2}+\dfrac{5}{6}+z\) = \(\dfrac{1}{2}\)

                                                              \(\dfrac{5}{6}\) + z = 0 ⇒ z = - \(\dfrac{5}{6}\)

Kết luận: (\(x;y;z\)) = (\(\dfrac{1}{2}\); \(\dfrac{5}{6}\); - \(\dfrac{5}{6}\))

 

16 tháng 8 2023

TH1: x + y + z  0

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

��+�+1 = ��+�+2 = ��+�−3 = �+�+��+�+1+�+�+2+�+�−3 

              = �+�+��+�+�+�+�+� = �+�+�2(�+�+�) = 12 

⇒ x + y + z = 12

⇒ x + y       = 12 - z

    x + z        = 12 - y

    y + z        = 12 - x

Thay y + z + 1 = 12 - x + 1

⇒ �12−�+1 = 12

⇒ 2x = 12 - x + 1

⇒ 2x + x = 12 + 1

⇒  3x   =  32

⇒   x    = 12

Thay x + z + 2 = 12 - y + 2

⇒ �12−�+2 = 12

⇒ 2y = 12 - y + 2

⇒ 2y + y = 12 + 2

⇒   3y  = 52

⇒     y   = 56

Thay x + y - 3 = 12 - z - 3

⇒ �12−�−3=\frac{1}{2}$

⇒ 2z = 12 - z - 3

⇒ 2z + z = 12 - 3

⇒  3z  = −52

⇒   z   = −56

TH2: x + y + z = 0

⇒ ��+�+1 = ��+�+2 = ��+�−3 = 0

⇒ x = y = z = 0

 

16 tháng 8 2023

loading...

https://olm.vn/cau-hoi/tim-tat-ca-cac-so-xyz-biet-dfracxyz1dfracyxz2dfraczxy-3xyz-giair-chi-tiet-ho-e-vs-a.8297156371934

12 tháng 8 2018

Vậy theo đề của mình nhé !

* trước tiên ta xét trường hợp x + y + z = 0, ta có :
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+2}=\dfrac{z}{x+y-3}=0\Rightarrow x=y=z=0\)
* xét x + y + z ≠ 0, ta có :

Áp dụng t/c dãy tỉ số bằng nhau, ta có :

\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+2}=\dfrac{x}{x+y-3}=\dfrac{x+y+z}{y+z+x+z+x+y}=\)

\(\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}=x+y+z\)

⇒ x + y + z = 1/2 và:
+ 2x = y + z + 1 = 1/2 - x + 1 ⇒ x = 1/2
+ 2y = x + z + 2 = 1/2 - y + 2 ⇒ y = 1/2
+ z = 1/2 - (x + y) = 1/2 - 1 = -1/2
Vậy có cặp (x,y,z) thỏa mãn là : (0, 0, 0) và (1/2,1/2,-1/2)

11 tháng 8 2018

hình như đề sai

4 tháng 1 2016

Áp dụng ...............ta có :

x/z+y+1=y/x+z+1=z/x+y-2=1/2

+,x/z+y+1=1/2=>2x=z+y+1

                      =>2x-1=z+y

lại có x+y+z=1/2(1)=>x+2x-1=1/2

                             =>3x=1/2+1=3/2

                             =>x=3/2 /3=1/2

+,y/x+z+1=1/2=>2y=x+z+1

                      =>2y-1=x+z

 Từ 1    =>2y-1+y=x+y+z

            =>3y=1/2+1=3/2

           =>y=3/2 /2 = 1/2

Thãy=1/2;y=1/2 vào 1 ta có :

1/2+1/2+z=1/2

z=1/2-1/2-1/2=-1/2

4 tháng 1 2016

vận dụng dãy tỉ số bằng nhau pp ăn cơm