Khối lượng của mỗi phân tử prôtêin (được tính bằng đơn vị cacbon) là:
A. Hàng chục
B. Hàng ngàn
C. Hàng trăm ngàn
D. Hàng triệu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Theo đề bài ta có:
\(\overline{abcd}+\overline{ab}+\overline{cd}=7968\)
\(100.\overline{ab}+\overline{cd}+\overline{ab}+\overline{cd}=7968\)
\(101.\overline{ab}+2.\overline{cd}=7968\) (1)
Ta có thể viết lại đề bài như sau:
\(\overline{abcd}\)
\(\overline{ab}+\overline{cd}=7968\)
Nhìn vào cách đặt phép tính ta thấy phép cộng nhớ sang hàng trăm. Mà đây là phép cộng có 3 số hạng nên hàng trăm của tổng nhiều nhất là 2. Vậy \(\overline{ab}\) chỉ có thể là 77;78;79 mà thôi. Thay các giá trị của \(\overline{ab}\) vào (1) ta có:
\(\overline{ab}=77\) thì \(\overline{cd}=\dfrac{191}{2}\) (loại)
\(\overline{ab}=78\) thì \(\overline{cd}=45\) (t/m)
\(\overline{ab}=79\) thì \(\overline{cd}=\dfrac{-11}{2}\) (loại)
Vậy số cần tìm là 7845
Gọi số đó là abcd
abcd là số chính phương nên đặt abcd = m2
Theo bài cho số (a +1)(b+3)(c+5)(d+3) là số chính phương nên đặt (a +1)(b+3)(c+5)(d+3) = n2 ( 31 < m < n < 100 do các số là đã cho là số chính phương có 4 chữ số)
Ta có: (a +1)(b+3)(c+5)(d+3) = 1000(a+1) + 100(b +3) + 10(c +5) + (d+3)
= abcd + 1000 + 300 + 50 + 3 = abcd + 1353
=> n2 - m2 = 1353
=> (n -m).(n +m)= 3.11.41 = 33.41 = 3.451 = 11.123
Do điều kiện của m; n nên 62 < m + n < 200
=> n - m = 11; n + m = 123
=>m = 56 => abcd = 3136
Vậy...
Chọn D. Biến đổi trực tiếp năng lượng của nhiên liệu thành cơ năng. Khi động cơ điện một chiều hoạt động, điện năng được chuyển hòa thành cơ năng nên đáp án D sai.
Theo đầu bài số đã cho còn thiếu hàng chục ngàn và hàng đơn vị - gọi chữ số hàng chục ngàn là b, chữ số hàng đơn vị là e, ta có số sau: 5b389e
- Vì số chia hết cho 2 và cho 5 chữ số tận cùng bằng 0 nên e phải bằng 1. 5b3891
- Vì tổng các chữ số của 1 số chia hết cho 3 thì số đó chia hết cho 3 - vì số đó chia cho 3 phải dư 1 nên 5b3891 -> ( 5+b+3+8+9+1) chia hết cho 3+1
Suy ra: b = ( 5+b+3+8+9+1) chia hết cho 3 dư1
b = ( 5+2+3+8+9+1) chia hết cho 3 dư1
b = 2, hoặc 5, hoặc 8.
Vậy các số tìm được là: 523891; 553891; 583891.
Vì chia 5 mà dư 1 thì e có thể là 6 nhưng 6 lại chia hết cho 2, giả thiết này bị loại trừ.
Đáp án D