K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2018

Giải bài 8 trang 90 sgk Giải tích 12 | Để học tốt Toán 12

Vậy bất phương trình có tập nghiệm Giải bài 8 trang 90 sgk Giải tích 12 | Để học tốt Toán 12

17 tháng 4 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

câu 1 giải các phương trình sau.a) 4x+8=3x-15b) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)câu 2 giải các bất phương trình sau và biểu diễn tập nghiệm trên trục sốa) 2x-8\(\ge\)0.b)10+10x>0câu 3 giải bài toán bằng các lập phương trìnhMột học sinh đi từ nhà đến trường với vận tốc 15km/h,rồi từ trường về nhà với vận tốc 20km/h.Biết thời gian đi nhiều hơn thời gian về là 15 phút. Tĩnh quãng đường...
Đọc tiếp

câu 1 giải các phương trình sau.

a) 4x+8=3x-15

b) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)

câu 2 giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số

a) 2x-8\(\ge\)0.

b)10+10x>0

câu 3 giải bài toán bằng các lập phương trình

Một học sinh đi từ nhà đến trường với vận tốc 15km/h,rồi từ trường về nhà với vận tốc 20km/h.Biết thời gian đi nhiều hơn thời gian về là 15 phút. Tĩnh quãng đường từ nhà đến trường của người đó.

câu 4 Cho hình chữ nhật ABCD có AB=8cm,BC=6cm.Kẻ đường cao AH của tam giác ADB(AH\(\perp\)DB,H\(\in\)DB).

a) Chúng minh \(\Delta\)HAD đồng dạng \(\Delta\)ABD.

b) Chứng minh:AD\(^2\)=DH.DB.

c)Tính độ dài các đoạn thẳng AH,DH.

d) Tính tỉ số diện tích \(\Delta\)HAD và \(\Delta\)ABD từ đó suy ra tỉ số đồng dạng của nó.

         giúp mình với mai mình thi rồi SOS !!!!!!!

 

 

1

2:

a: =>x-4>=0

=>x>=4

b: =>x+1>0

=>x>-1

28 tháng 1 2022

1) \(ĐK:x\ne2\) 

Nếu \(x>2\) 

BPT ⇔ \(x^2-2x+5-\left(x-1\right)\left(x-2\right)\ge0\) ⇔ \(x^2-2x+5-\left(x^2-3x+3\right)\ge0\)

\(x+2\ge0\) ⇔\(x\ge-2\) ⇒ Lấy \(x\ge2\)

Nếu \(x< 2\)

BPT ⇔\(\dfrac{-\left(x^2-2x+5\right)}{x-2}-x+1\ge0\) ⇔\(-x^2+2x-5-\left(x-1\right)\left(x-2\right)\ge0\)

\(-x^2+2x-5-x^2+3x-2\ge0\)

\(-2x^2+5x-7\ge0\)

\(x^2-\dfrac{5}{2}x+\dfrac{7}{2}\le0\)

\(\left(x-\dfrac{5}{4}\right)^2\le\dfrac{11}{4}\)

\(\left[{}\begin{matrix}x-\dfrac{5}{4}\le\dfrac{11}{4}\\x-\dfrac{5}{4}\le\dfrac{-11}{4}\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}x\le4\\x\le\dfrac{-3}{2}\end{matrix}\right.\) ⇔ \(x\le\dfrac{-3}{2}\) 

S= [2;+∞)U(-∞;\(\dfrac{-3}{2}\)]

28 tháng 1 2022

2) \(ĐK:x\ne-1\) 

Nếu \(x>-1\) 

BPT ⇔ \(2x-3-2\left(x+1\right)< 0\) ⇔\(2x-3-2x-2< 0\)

 ⇔\(-5< 0\) ( luôn đúng với mọi \(x>-1\))

Nếu \(x< -1\)

BPT⇔\(\dfrac{-\left(2x-3\right)}{x+1}-2< 0\) ⇔\(-\left(2x-3\right)-2\left(x+1\right)< 0\) ⇔\(-4x+1< 0\) ⇔ \(x>\dfrac{-1}{4}\)

Vậy S=....

AH
Akai Haruma
Giáo viên
30 tháng 8 2021

1.

$2(-2x+1)\leq -x+3$

$\Leftrightarrow -4x+2\leq -x+3$

$\Leftrightarrow -1\leq 3x$

$\Leftrightarrow x\geq \frac{-1}{3}$ 

2.

$2(x+1)\leq  -x+3$

$\Leftrightarrow 2x+2\leq -x+3$

$\Leftrightarrow 3x\leq 1$

$\Leftrightarrow x\leq \frac{1}{3}$

 

AH
Akai Haruma
Giáo viên
30 tháng 8 2021

3.

$5-3(x-1)>2$

$\Leftrightarrow 5-(3x-3)>2$

$\Leftrightarrow 8-3x>2$

$\Leftrightarrow 8-3x-2>0$

$\Leftrightarrow 6-3x>0$

$\Leftrightarrow 6>3x$

$\Leftrightarrow x< 2$

4.

$x^2-12x+3-(x-3)^2>0$

$\Leftrightarrow x^2-12x+3-(x^2-6x+9)>0$

$\Leftrightarrow -6x-6>0$

$\Leftrightarrow -6>6x$

$\Leftrightarrow x< -1$

 

a: Ta có: \(3x-5\ge2\left(x-6\right)-12\)

\(\Leftrightarrow3x-5\ge2x-24\)

hay \(x\ge-19\)

b: Ta có: \(2\left(5-2x\right)\ge3-x\)

\(\Leftrightarrow10-4x-3+x\ge0\)

\(\Leftrightarrow-3x\ge-7\)

hay \(x\le\dfrac{7}{3}\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 8 2023

\(a,\left(\dfrac{1}{3}\right)^{2x+1}\le9\\ \Leftrightarrow2x+1\ge-2\\ \Leftrightarrow2x\ge-3\\ \Leftrightarrow x\ge-\dfrac{3}{2}\)

\(b,4^x>2^{x-2}\\ \Leftrightarrow2^{2x}>2^{x-2}\\ \Leftrightarrow2x>x-2\\ \Leftrightarrow x>-2\)