K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2018

ABCD có các cặp cạnh đối bằng nhau ⇒ ABCD là hình bình hành

23 tháng 10 2023

Sửa đề: Từ A,C hạ AH,CK lần lượt vuông góc với BD

Xét ΔAHD vuông tại H và ΔCKB vuông tại K có

AD=CB

\(\widehat{ADH}=\widehat{CBK}\)

Do đó: ΔAHD=ΔCKB

=>AH=CK

AH\(\perp\)BD

CK\(\perp\)BD

Do đó: AH//CK

Xét tứ giác AHCK có

AH//CK

AH=CK

Do đó: AHCK là hình bình hành

a: Ta có: AE+EB=AB

DF+FC=DC

mà AE=FC

và AB=DC

nên EB=DF

Xét tứ giác EBFD có 

EB//DF

EB=DF

Do đó: EBFD là hình bình hành

Suy ra: DE=BF

b: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

13 tháng 1 2018

- ABCD có các góc đối bằng nhau (đều là góc vuông) nên ABCD là hình bình hành

- ABCD là hình thang (vì AB // CD),

hai góc ở đáy: góc D = góc C ⇒ ABCD là hình thang cân

a: Ta có: \(AM=MB=\dfrac{AB}{2}\)

\(CN=ND=\dfrac{CD}{2}\)

mà AB=CD

nên AM=MB=CN=ND

Xét ΔMAP và ΔNCQ có 

MA=CN

\(\widehat{A}=\widehat{C}\)

AP=CQ

Do đó: ΔMAP=ΔNCQ

b: Ta có: BQ+CQ=BC

AP+DP=AD

mà BC=AD

và CQ=AP

nên BQ=DP

Xét ΔMBQ và ΔNDP có

MB=ND

\(\widehat{B}=\widehat{D}\)

BQ=DP

Do đó: ΔMBQ=ΔNDP

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Vì \(ABCD\) là hình bình hành (gt)

Suy ra \(AD = BC\); \(AD\) // \(BC\)

Mà \(E\), \(F\) là trung điểm của \(AD\), \(BC\) (gt)

Suy ra \(AE = ED = BF = FC\)

Xét tứ giác \(EBFD\) ta có:

\(ED = FB\) (cmt)

\(ED\) // \(BF\) (do \(AD\) // \(BC\))

Suy ra \(EDFB\) là hình bình hành

b) Vì \(ABCD\) là hình bình hành (gt)

Suy ra \(O\) là trung điểm của \(AC\) và \(BD\)

Mà \(DEBF\) là hình bình hành (gt)

Suy ra \(O\) cũng là trung điểm của \(EF\)

Suy ra \(E\), \(O\), \(F\) thẳng hàng

31 tháng 3 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇔ tứ giác ABCD là hình bình hành.