K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2021

x^4+2x^3-13x^2-14x+24

=x^4-x^3+3x^3-3x^2-10x^2+10x-24x+24

=(x^4-x^3)+(3x^3-3x^2)-10x^2+10x-24x+24

=x^3.(x-1)+3x^2(x-1)+10x(x-1)-24(x-1)

=(x-1).(x^3+3x^2+10x-24)

=(x-1).(x^3-3x^2+6x^2-18x+8x-24)

=(x-1).[(x^3-3x^2)+6x^2-18x+(8x-24)]

=(x-1).[x^2.(x-3)+6x(x-3)+8(x-3)]

=(x-1).(x-3).(x^2+6x+8)

=(x-1).(x-3).(x^2=4x+2x+8)

=(x-1).(x-3).[x(x+4)+2(x+4)]

=(x-1).(x-3).(x+2)(x+4)

15 tháng 12 2023

x⁴ - 2x³ + 2x - 1

= (x⁴ - 1) - (2x³ - 2x)

= (x² - 1)(x² + 1) - 2x(x² - 1)

= (x² - 1)(x² + 1 - 2x)

= (x - 1)(x + 1)(x² - 2x + 1)

= (x - 1)(x + 1)(x - 1)²

= (x - 1)³(x + 1)

19 tháng 5 2021

Ta có:

\(\left(x^4+2x^3-x-2\right)+\left(4x^2+4x+4\right)\)

\(=\left[\left(x^4+2x^3\right)-\left(x+2\right)\right]+4\left(x^2+x+1\right)\)

\(=\left[x^3\left(x+2\right)-\left(x-2\right)\right]+4\left(x^2+x+1\right)\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+1\right)+4\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[\left(x-1\right)\left(x+2\right)+4\right]\)

\(=\left(x^2+x+1\right)\left(x^2+x+2\right)\)

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

a. 

$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$

b.

$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$

c.

$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$

d.

$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$

$=(x+1)(x^2-4x+1)$

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

e.

$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$

$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$

f.

$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$

$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$

g.

$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$

$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$

$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$

$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$

h.

$x^6+2x^5+x^4-2x^3-2x^2+1$

$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$

$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$

\(x^4+2x^3-4x-4\)

\(=\left(x^2-2\right)\left(x^2+2\right)-2x\left(x^2-2\right)\)

\(=\left(x^2-2\right)\left(x^2-2x+2\right)\)

17 tháng 5 2018

a) ( x 2  – 4x + 1)( x 2  – 2x + 3).

b) ( x 2  + 5x – 1)( x 2  + x – 1).

27 tháng 11 2017

x 4 - 2 x 3 - 2 x 2 - 2 x - 3 =   ( x 4   −   1 )   −   ( 2 x 3   +   2 x 2 )   −   ( 2 x   +   2 ) =   ( x 2   +   1   ) ( x 2   −   1 )   −   2 x 2 ( x   +   1 )   − 2 ( x   +   1 ) =   ( x 2   +   1 ) ( x   −   1 ) ( x   +   1 )   −   2 x 2 ( x   +   1 )   − 2 ( x   +   1 ) =   ( x   +   1 ) ( x 2   +   1 ) ( x   −   1 )   −   2 x 2   –   2 =   ( x   +   1 ) (   x 2   +   1 ) ( x   −   1 )   −   2 ( x 2   +   1 ) =   ( x   +   1 ) (   x 2   +   1 ) ( x   –   1   −   2 ) =   ( x   +   1 ) (   x 2   +   1 ) ( x   −   3 )

21 tháng 8 2021

x^4 - 2x^3 - 2x^2 - 2x - 3 

= x^4 - 1 - 2x^3 - 2x^2 - 2x -2 

= ( x - 1 ) ( x + 1 ) ( x^2 + 1 ) - 2x^2 ( x + 1 ) - 2 ( x + 1 ) 

= ( x + 1 ) [ ( x - 1 ) ( x^2 + 1 ) - 2x^2 - 2 ] 

= ( x + 1 ) [ ( x - 1 ) ( x^2 + 1 - 2 ( x^2 - 1 ) ] 

= ( x + 1 ) [ ( x - 1 ) ( x^2 + 1 ) - 2 ( x - 1 ) ( x + 1 ) ] 

= ( x + 1 ) ( x - 1 ) [ ( x^2 + 1 ) - 2 ( x +1 ) 

= ( x + 1 ) ( x - 1 ) ( x^2 +1 - 2x - 2 ) 

= ( x + 1 ) ( x - 1 ) ( x^2 - 2x - 1 ) 

25 tháng 9 2019

d) x4 + 2x3 - 4x – 4 = (x4 – 4) + (2x3 – 4x) = (x2 – 2)(x2 + 2) + 2x(x2 – 2)

= (x2 – 2)(x2 + 2 + 2x) = (x - √2)( x + √2)( x2 + 2 + 2x)

17 tháng 12 2023

e, x4 - 2x3 + x2 

= x2( x2  - 2x + 1)  

= x2 (x - 1)2

 

18 tháng 12 2023

e: \(x^4-2x^3+x^2\)

\(=x^2\cdot x^2-x^2\cdot2x+x^2\cdot1\)

\(=x^2\left(x^2-2x+1\right)\)

\(=x^2\left(x-1\right)^2\)

f: \(27y^3-x^3\)

\(=\left(3y\right)^3-x^3\)

\(=\left(3y-x\right)\left(9y^2+3xy+x^2\right)\)

29 tháng 10 2021

\(=x^4-3x^3+x^3-3x^2-x^2+3x+x-3\)

\(=\left(x-3\right)\left(x^3+x^2-x+1\right)\)