Cho tam giác ABC vuông tại A, có AB = 3cm, AC = 4cm, BC = 5cm. Qua B kẻ đường thẳng a song song với AC. Khi đó, khoảng cách giữa hai đường thẳng a và AC là:
A. 3cm B. 4cm C. 5cm D. 3,5cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABC\) vuông tại A:
\(BC^2=AB^2+AC^2\) (Pytago).
Thay: \(BC^2=3^2+4^2.\)
\(\Rightarrow BC=5\left(cm\right).\)
Xét \(\Delta ABC:\)
BD là đường phân giác (gt).
\(\Rightarrow\dfrac{AD}{CD}=\dfrac{AB}{BC}\) (Tính chất đường phân giác).
\(\Rightarrow\dfrac{AD}{CD+AD}=\dfrac{AB}{BC+AB}.\)
\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AB}{BC+AB}.\)
Thay: \(\dfrac{AD}{4}=\dfrac{3}{5+3}.\)
\(\Rightarrow AD=1,5\left(cm\right).\)
\(\Rightarrow CD=BC-AD=5-1,5=3,5\left(cm\right).\)
b) Xét \(\Delta ABC:\)
DK // AB (gt).
\(\Rightarrow\dfrac{BK}{CK}=\dfrac{AD}{CD}\left(Talet\right).\)
Mà \(\dfrac{AD}{CD}=\dfrac{AB}{BC}\left(cmt\right).\)
\(\Rightarrow\dfrac{BK}{CK}=\dfrac{AB}{BC}.\\ \Rightarrow BK.BC=AB.CK.\)
a) Xét 2∆: ABC và HAB có
+ ∠BAC = 900(gt); ∠BHA = 900 (AH ^ BH) => ∠BAC= ∠BHA
+ ∠ABC = ∠ BAH (so le)
=> ∆ABC ~ ∆HAB
b) Xét 2∆: HAB và KCA có:
+ ∠CKA = 900 (CK ^ AK) => ∠AHB = ∠CKA
+ ∠CAK + ∠BAH = 900(do ∠BAC = 900), ∠BAH + ∠ABH = 900 (∆HAB vuông ở H) =>
∠CAK = ∠ABH
=> ∆HAB ~ ∆KCA
=> AH.AK = BH.CK
c) có: ∆ABC ~ ∆HAB (c/m a)
Ta có: + AH // BC
+ MA + MB = AB => MA + MB = 3cm
=> 34/25MB = 3
=> MB = 75/34cm
+ Diện tích ∆MBC là
S =1/2.AC.MB=75/17
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: AB=căn 4^2+3^2=5cm
c: Xét ΔABC có
H là trung điểm của BC
HM//AC
=>M là trung điểm của AB
Xét ΔABC có
CM,AH là trung tuyến
CM cắt AH tại G
=>G là trọng tâm