Tìm số nguyên x sao cho: x+16 chia hết cho x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Ta có: 1/ x + 14 chia hết cho 7 mà 14 chia hết cho 7 => x chia hết cho 7 => x \(\in\)B (7)
2/ x - 16 chia hết cho 8 mà 16 chia hết cho 8 => x chia hết cho 8 => x \(\in\)B (8)
3/ 54 + x chia hết cho 9 mà 54 chia hết cho 9 => x chia hết cho 9 => x \(\in\)B (9)
Từ 1/ ; 2/ ; 3/ ta có: x \(\in\)BC (7 ; 8 ; 9)
Mà: x bé nhất => x = BCNN (7 ; 8 ; 9) = 504
Vậy x = 504
mình cần cách trình bày vì cô giáo chưa dạy mình cách trình bày dạng này
Mk nghĩ là như thê này
Câu 1:
6 chia hết cho x-1 => x-1 là ước của 6.Mà Ư(6)={1;-1;2;-2;3;-3;6;-6}=> x={2;0;3;-1;4;-2;7;-5}
Câu 2;
14 chia hết cho 2x+3
=>2x+3 là ước của 14.Mà Ư(14)={1;-1;2;-2;7;-7;14;-14}
=>x={-1;-2;2;-5;}
( x + 16 ) chia hết cho ( x + 1 ):
( x + 1 + 15 ) chia hết cho ( x + 1 )
( x + 1 ) chia hết cho ( x + 1 ); 15 chia hết cho ( x + 1 ).
Vậy ( x + 1 ) thuộc Ư (15) với ( x + 1 ) phải lớn hơn hoặc bằng 1.
Ư (15) = { 1; 3; 5; 15 }.
x + 1 có thể bằng 1; 3; 5 hoặc 15.
Nếu:
x + 1 = 1 => x = 0
x + 1 = 3 => x = 2
x + 1 = 5 => x = 4
x + 1 = 15 => x = 14
Kết luận: Nếu x = 0; 2; 4; 14 thì ( x + 16 ) chia hết cho ( x + 1 )
( x + 16 ) chia hết cho ( x + 1 ):
( x + 1 + 15 ) chia hết cho ( x + 1 )
( x + 1 ) chia hết cho ( x + 1 ); 15 chia hết cho ( x + 1 ).
Vậy ( x + 1 ) thuộc Ư (15) với ( x + 1 ) phải lớn hơn hoặc bằng 1.
Ư (15) = { 1; 3; 5; 15 }.
x + 1 có thể bằng 1; 3; 5 hoặc 15.
Nếu:
x + 1 = 1 => x = 0
x + 1 = 3 => x = 2
x + 1 = 5 => x = 4
x + 1 = 15 => x = 14
Kết luận: Nếu x = 0; 2; 4; 14 thì ( x + 16 ) chia hết cho ( x + 1 )
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.
Ta có: x+16=x+1+15 mà x+16 chia hết cho x+1 nên 15 chia hết cho x+1.
suy ra: x+1 =-1 hoặc x+1=1 hoặc x+1= -3 hoặc x+1=3 hoặc x+1=-5 hoặc x+1=5 hoặc x+1=-15 hoặc x+1=15.
Từ đó suy ra các giá trị tương ứng của x cần tìm là:
x= -2 hoặc x=0 hoặc x=-4 hoặc x=2 hoặc x=-6 hoặc x=4 hoặc x= -16 hoặc x=14
Kết quả là 2
Vì:16+2=18
1+2=3
Mà:18 chia hết cho 3
Nên KQuả là 2