Gieo một đồng tiền liên tiếp cho đến khi xuất hiện mặt sấp hoặc cả 4 lần ngửa thì dừng lại.
a. Mô tả không gian mẫu.
b. Xác định các biến cố.
A: "Số lần gieo không vượt quá 3"
B: "Số lần gieo là 4"
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Không gian mẫu của phép thử đã cho là:
Ω = {S, NS, NNS, NNNS, NNNN}.
b) A = {S, NS, NNS};
B = {NNNS, NNNN}.
Kí hiệu mặt sấp là S, mặt ngửa là N.
Ω = S ; N S ; N N S ; N N N S ; N N N N S ; NNNNN ⇒ Ω = 6.
a) Kí hiệu S là đồng xu ra mặt sấp và N là đồng xu ra mặt ngửa. Ta có sơ đồ cây
Dựa vào sơ đồ cây ta suy ra \(n\left( \Omega \right) = 16\).
b) Gọi A là biến cố: “gieo đồng xu 4 lần có hai lần xuất hiện mặt sấp và hai lần xuất hiện mặt ngửa”
Suy ra \(A = \left\{ {SSNN;SNSN;SNNS;NSSN;NSNS;NNSS} \right\}\). Suy ra \(n\left( A \right) = 6\). Vậy\(P\left( A \right) = \frac{6}{{16}} = \frac{3}{8}\).
a) Sơ đồ cây
b) Từ sơ đồ cây ta có \(n\left( \Omega \right) = 12\).
Ta có \(F = \left\{ {\left( {1,N} \right);\left( {2,N} \right);\left( {3,N} \right);\left( {4,N} \right);\left( {5,N} \right);\left( {6,N} \right)} \right\}\). Suy ra \(n\left( F \right) = 6\). Vậy \(P\left( F \right) = \frac{6}{{12}} = 0,5\).
\(G = \left\{ {\left( {1,S} \right);\left( {2,S} \right);\left( {3,S} \right);\left( {4,S} \right);\left( {5,S} \right);\left( {6,S} \right);\left( {5,N} \right)} \right\}\). Suy ra \(n\left( G \right) = 7\). Vậy \(P\left( G \right) = \frac{7}{{12}}\).
a. Kí hiệu : S là đồng tiền ra mặt sấp và N là đồng tiền ra mặt ngửa
Không gian mẫu gồm 8 phần tử:
Ω = {SSS, SSN, NSS, SNS, NNS, NSN, SNN, NNN}
b.Xác định các biến cố:
A:"Lần đầu xuất hiện mặt sấp"
A ={SSS, SSN, SNS, SNN}
B: "Mặt sấp xảy ra đúng một lần"
B = {SNN, NSN, NNS}
C: "Mặt ngửa xảy ra ít nhất một lần".
C = {SSN, NSS, SNS, NNS, NSN, SNN, NNN}
a) Không gian mẫu có dạng
Ω = {SSS, SSN, SNS, NSS, SNN, NSN, NNS, NNN}
b)
A = {SSS, SNS, SSN, SNN};
B = {SSS, NNN};
C = {SSN, SNS, NSS};
D = {NN N } = Ω \ {NNN}.
a) Không gian mẫu là: \(\Omega = \left\{ {\left( {1,S} \right);\left( {2,S} \right);\left( {3,S} \right);\left( {4,S} \right);\left( {5,S} \right);\left( {6,S} \right);\left( {1,N} \right);\left( {2,N} \right);\left( {3,N} \right);\left( {4,N} \right);\left( {5,N} \right);\left( {6,N} \right)} \right\}\).
b) \(C = \left\{ {\left( {1,S} \right);\left( {2,S} \right);\left( {3,S} \right);\left( {4,S} \right);\left( {5,S} \right);\left( {6,S} \right)} \right\} \Rightarrow \overline C = \left\{ {\left( {1,N} \right);\left( {2,N} \right);\left( {3,N} \right);\left( {4,N} \right);\left( {5,N} \right);\left( {6,N} \right)} \right\}\)
\(D = \left\{ {\left( {1,N} \right);\left( {2,N} \right);\left( {3,N} \right);\left( {4,N} \right);\left( {5,N} \right);\left( {6,N} \right);\left( {5,S} \right)} \right\} \Rightarrow \overline D = \left\{ {\left( {1,S} \right);\left( {2,S} \right);\left( {3,S} \right);\left( {4,S} \right);\left( {6,S} \right)} \right\}\).
a: n(A)=2
n(omega)=2*2*2=8
=>P(A)=2/8=1/4
b: B={(NSS); (SNS); (SSN)}
=>n(B)=3
=>P(B)=3/8
c: C={NSS; NSN; SSN; SSS}
=>n(C)=4
=>P(C)=4/8=1/2
d: D={NSN; NNS; NNN; SNN; NSS; SNS; SSN}
=>n(D)=6
=>P(D)=6/8=3/4
a. Không gian mẫu của phép thử gồm 5 phần tử được mô tả sau:
Ω = {S, NS, NNS, NNNS, NNNN}
b. Xác định các biến cố:
+ A: "Số lần gieo không vượt quá 3"
A = {S, NS, NNS}
+ B: "Số lần gieo là 4"
B = {NNNS, NNNN}.