K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2019

Giải bài tập Toán 12 | Giải Toán lớp 12

Vậy không tồn tại đạo hàm của hàm số tại x = 0.

Nhưng dựa vào đồ thị của hàm số y = |x|. Ta có hàm số đạt cực trị tại x = 0.

23 tháng 1 2017

Hàm số có tập xác định D = R và liên tục trên R.

+ Chứng minh hàm số Giải bài 3 trang 18 sgk Giải tích 12 | Để học tốt Toán 12 không có đạo hàm tại x = 0.

Xét giới hạn Giải bài 3 trang 18 sgk Giải tích 12 | Để học tốt Toán 12 Giải bài 3 trang 18 sgk Giải tích 12 | Để học tốt Toán 12 :

Giải bài 3 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Không tồn tại giới hạn Giải bài 3 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Hay hàm số không có đạo hàm tại x = 0.

+ Chứng minh hàm số đạt cực tiểu tại x = 0 (Dựa theo định nghĩa).

Ta có : f(x) > 0 = f(0) với ∀ x ∈ (-1 ; 1) và x ≠ 0

⇒ Hàm số y = f(x) đạt cực tiểu tại x = 0.

9 tháng 11 2018

Hàm số:


Không có đạo hàm tại x = 0 vì:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt khác, với x < 0 thì Giải sách bài tập Toán 12 | Giải sbt Toán 12

với x > 0 thì y’ = -2 < 0

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta thấy hàm số đạt cực đại tại x = 0 và y C Đ  = y(0) = 0.

8 tháng 4 2019

Hàm số:

f x = - 2 x   nếu   x ≥ 0 sin x 2   nếu   x < 0

Không có đạo hàm tại x = 0 vì:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt khác, với x < 0 thì Giải sách bài tập Toán 12 | Giải sbt Toán 12

với x > 0 thì y’ = -2 < 0

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta thấy hàm số đạt cực đại tại x = 0 và y CD  = y(0) = 0.

13 tháng 2 2019

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Đồ thị hàm số y = |x| có dạng hình vẽ.

Từ đồ thị trong hình ta có hàm số y = |x| liên tục tại x = 0 nhưng không có đạo hàm tại điểm đó. Sử dụng định nghĩa cực trị ta có hàm số y = |x| đạt cực tiểu tại x = 0

Do đó mệnh đề 1 và 4 đúng. Chọn đáp án C

31 tháng 3 2017

Đặt . Giả sử x > 0, ta có :

Do đó hàm số không có đạo hàm tại x = 0 . Tuy nhiên hàm số đạt cực tiểu tại x = 0 vì .

29 tháng 1 2017

30 tháng 11 2017

Đáp án A

Phương pháp:

Dựa vào khái niệm cực trị và các kiến thức liên quan.

Cách giải:

(1) chỉ là điều kiện cần mà không là điều kiện đủ.

VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.

(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.

(3) hiển nhiên sai.

Vậy (1), (2), (3): sai; (4): đúng

8 tháng 12 2017

Đáp án C

24 tháng 6 2018

Đáp án A

Mệnh đề 1) sai vì f ' x 0 = 0  chỉ là điều kiện cần chưa là điều kiện đủ để hàm số đạt cực trị tại  x 0  

Mệnh đề 2) Sai vì khi    f ' x 0 = f ' ' x 0 = 0 có thể hàm số có thể đạt cực trị hoặc không đạt cực trị tại  x 0 .

Mệnh đề 3) sai vì f ' x  đổi dấu qua điểm  x 0  thì điểm  x 0  có thể là điểm cực đại hoặc điểm  cực tiểu của hàm số.

Mệnh đề 4) Sai vì trong trường hợp này x 0  là điểm cực tiểu của đồ thị hàm số.