K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2018

10 tháng 3 2022

a, \(\left(x-5\right)\left(x-5+3\right)=0\Leftrightarrow x=5;x=2\)

b, \(-4x=\dfrac{274}{21}\Leftrightarrow x=-\dfrac{137}{42}\)

c, đk x khác - 2 ; 2 

\(x^2-3x+2-x^2-2x=6-7x\Leftrightarrow-5x+2=6-7x\)

\(\Leftrightarrow2x-4=0\Leftrightarrow x=2\left(ktm\right)\)

Vậy pt vô nghiệm 

1:

a: =>(|x|+4)(|x|-1)=0

=>|x|-1=0

=>x=1; x=-1

b: =>x^2-4>=0

=>x>=2 hoặc x<=-2

d: =>|2x+5|=2x-5

=>x>=5/2 và (2x+5-2x+5)(2x+5+2x-5)=0

=>x=0(loại)

7:

a: =>0,5x-5=2 hoặc 0,5x-5=-2

=>0,5x=3 hoặc 0,5x=7

=>x=6 hoặc x=14

b: |5x-2|=-3

mà |5x-2|>=0

nên ptvn

c: =>1/4x+3=0

=>1/4x=-3

=>x=-12

7 tháng 9 2023

\(a,\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)

\(\Leftrightarrow x^2-4x+4-\left(x^2-9\right)=6\)

\(\Leftrightarrow-4x+13=6\)

\(\Leftrightarrow-4x=-7\)

\(\Leftrightarrow x=\dfrac{7}{4}\)

\(b,\left(x+3\right)^2+\left(4+x\right)\left(4-x\right)=10\)

\(\Leftrightarrow x^2+6x+9+16-x^2=10\)

\(\Leftrightarrow6x+25=10\)

\(\Leftrightarrow6x=-15\)

\(\Leftrightarrow x=-\dfrac{5}{2}\)

\(c,\left(x+4\right)^2+\left(1-x\right)\left(1+x\right)=7\)

\(\Leftrightarrow x^2+8x+16+1-x^2=7\)

\(\Leftrightarrow8x+17=7\)

\(\Leftrightarrow8x=-10\)

\(\Leftrightarrow x=-\dfrac{5}{4}\)

\(d,\left(x-4\right)^2-\left(x-2\right)\left(x+2\right)=6\)

\(\Leftrightarrow x^2-8x+16-\left(x^2-4\right)=6\)

\(\Leftrightarrow-8x+20=6\)

\(\Leftrightarrow-8x=-14\)

\(\Leftrightarrow x=\dfrac{7}{4}\)

#\(Urushi\)

a) Ta có: \(\dfrac{x+4}{5}-x+4=\dfrac{x}{3}-\dfrac{x-2}{2}\)

\(\Leftrightarrow\dfrac{6\left(x+4\right)}{30}-\dfrac{30x}{30}+\dfrac{120}{30}=\dfrac{10x}{30}-\dfrac{15\left(x-2\right)}{30}\)

\(\Leftrightarrow6x+24-30x+120=10x-15x+30\)

\(\Leftrightarrow-24x+144=-5x+30\)

\(\Leftrightarrow-24x+5x=30-144\)

\(\Leftrightarrow-19x=-114\)

hay x=6

Vậy: S={6}

b) Ta có: \(\dfrac{4-5x}{6}=\dfrac{2\left(-x+1\right)}{2}\)

\(\Leftrightarrow2\cdot\left(4-5x\right)=12\left(-x+1\right)\)

\(\Leftrightarrow2-10x=-12x+12\)

\(\Leftrightarrow2-10x+12x-12=0\)

\(\Leftrightarrow2x-10=0\)

\(\Leftrightarrow2x=10\)

hay x=5

Vậy: S={5}

c) Ta có: \(\dfrac{-\left(x-3\right)}{2}-2=\dfrac{5\left(x+2\right)}{4}\)

\(\Leftrightarrow\dfrac{2\left(3-x\right)}{4}-\dfrac{8}{4}=\dfrac{5\left(x+2\right)}{4}\)

\(\Leftrightarrow6-2x-8=5x+10\)

\(\Leftrightarrow-2x+2-5x-10=0\)

\(\Leftrightarrow-7x-8=0\)

\(\Leftrightarrow-7x=8\)

hay \(x=-\dfrac{8}{7}\)

Vậy: \(S=\left\{-\dfrac{8}{7}\right\}\)

d) Ta có: \(\dfrac{7-3x}{2}-\dfrac{5+x}{5}=1\)

\(\Leftrightarrow\dfrac{5\left(7-3x\right)}{10}-\dfrac{2\left(x+5\right)}{10}=\dfrac{10}{10}\)

\(\Leftrightarrow35-15x-2x-10-10=0\)

\(\Leftrightarrow-17x+15=0\)

\(\Leftrightarrow-17x=-15\)

hay \(x=\dfrac{15}{17}\)

Vậy: \(S=\left\{\dfrac{15}{17}\right\}\)

1 tháng 2 2021

a) Ta có: x+45−x+4=x3−x−22x+45−x+4=x3−x−22

⇔6(x+4)30−30x30+12030=10x30−15(x−2)30⇔6(x+4)30−30x30+12030=10x30−15(x−2)30

⇔6x+24−30x+120=10x−15x+30⇔6x+24−30x+120=10x−15x+30

⇔−24x+144=−5x+30⇔−24x+144=−5x+30

⇔−24x+5x=30−144⇔−24x+5x=30−144

⇔−19x=−114⇔−19x=−114

hay x=6

Vậy: S={6}

b) Ta có: 4−5x6=2(−x+1)24−5x6=2(−x+1)2

⇔2⋅(4−5x)=12(−x+1)⇔2⋅(4−5x)=12(−x+1)

⇔2−10x=−12x+12⇔2−10x=−12x+12

⇔2−10x+12x−12=0⇔2−10x+12x−12=0

⇔2x−10=0⇔2x−10=0

⇔2x=10⇔2x=10

hay x=5

Vậy: S={5}

c) Ta có: −(x−3)2−2=5(x+2)4−(x−3)2−2=5(x+2)4

⇔2(3−x)4−84=5(x+2)4⇔2(3−x)4−84=5(x+2)4

⇔6−2x−8=5x+10⇔6−2x−8=5x+10

⇔−2x+2−5x−10=0⇔−2x+2−5x−10=0

⇔−7x−8=0⇔−7x−8=0

⇔−7x=8⇔−7x=8

hay x=−87x=−87

Vậy: S={−87}S={−87}

d) Ta có: 7−3x2−5+x5=17−3x2−5+x5=1

⇔5(7−3x)10−2(x+5)10=1010⇔5(7−3x)10−2(x+5)10=1010

⇔35−15x−2x−10−10=0⇔35−15x−2x−10−10=0

⇔−17x+15=0⇔−17x+15=0

⇔−17x=−15⇔−17x=−15

hay x=1517x=1517

Vậy: S={1517}

a) Ta có: x+45−x+4=x3−x−22x+45−x+4=x3−x−22

⇔6(x+4)30−30x30+12030=10x30−15(x−2)30⇔6(x+4)30−30x30+12030=10x30−15(x−2)30

⇔6x+24−30x+120=10x−15x+30⇔6x+24−30x+120=10x−15x+30

⇔−24x+144=−5x+30⇔−24x+144=−5x+30

⇔−24x+5x=30−144⇔−24x+5x=30−144

⇔−19x=−114⇔−19x=−114

hay x=6

Vậy: S={6}

b) Ta có: 4−5x6=2(−x+1)24−5x6=2(−x+1)2

⇔2⋅(4−5x)=12(−x+1)⇔2⋅(4−5x)=12(−x+1)

⇔2−10x=−12x+12⇔2−10x=−12x+12

⇔2−10x+12x−12=0⇔2−10x+12x−12=0

⇔2x−10=0⇔2x−10=0

⇔2x=10⇔2x=10

hay x=5

Vậy: S={5}

c) Ta có: −(x−3)2−2=5(x+2)4−(x−3)2−2=5(x+2)4

⇔2(3−x)4−84=5(x+2)4⇔2(3−x)4−84=5(x+2)4

⇔6−2x−8=5x+10⇔6−2x−8=5x+10

⇔−2x+2−5x−10=0⇔−2x+2−5x−10=0

⇔−7x−8=0⇔−7x−8=0

⇔−7x=8⇔−7x=8

hay x=−87x=−87

Vậy: S={−87}S={−87}

d) Ta có: 7−3x2−5+x5=17−3x2−5+x5=1

⇔5(7−3x)10−2(x+5)10=1010⇔5(7−3x)10−2(x+5)10=1010

⇔35−15x−2x−10−10=0⇔35−15x−2x−10−10=0

⇔−17x+15=0⇔−17x+15=0

⇔−17x=−15⇔−17x=−15

hay x=1517x=1517

Vậy: S={1517}

a) ĐKXĐ: \(x\notin\left\{-3;2;-1;\dfrac{1}{2}\right\}\)

Ta có: \(\dfrac{5}{x^2+x-6}-\dfrac{2}{x^2+4x+3}=\dfrac{-3}{2x-1}\)

\(\Leftrightarrow\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{2}{\left(x+3\right)\left(x+1\right)}=\dfrac{-3}{2x-1}\)

\(\Leftrightarrow\dfrac{5\left(x+1\right)}{\left(x+3\right)\left(x-2\right)\left(x+1\right)}-\dfrac{2\left(x-2\right)}{\left(x+3\right)\left(x+1\right)\left(x-2\right)}=\dfrac{-3}{2x-1}\)

\(\Leftrightarrow\dfrac{5x+5-2x+4}{\left(x+3\right)\left(x+1\right)\left(x-2\right)}=\dfrac{-3}{2x-1}\)

\(\Leftrightarrow\dfrac{3x+9}{\left(x+3\right)\left(x+1\right)\left(x-2\right)}=\dfrac{3}{1-2x}\)

\(\Leftrightarrow\dfrac{3\left(x+3\right)}{\left(x+3\right)\left(x+1\right)\left(x-2\right)}=\dfrac{3}{1-2x}\)

\(\Leftrightarrow\dfrac{3}{\left(x+1\right)\left(x-2\right)}=\dfrac{3}{1-2x}\)

Suy ra: \(\left(x+1\right)\left(x-2\right)=1-2x\)

\(\Leftrightarrow x^2-x-2-1+2x=0\)

\(\Leftrightarrow x^2+x-3=0\)

\(\Delta=1^2-4\cdot1\cdot\left(-3\right)=13\)

Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{13}}{2}\left(nhận\right)\\x_2=\dfrac{-1+\sqrt{13}}{2}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{-1-\sqrt{13}}{2};\dfrac{-1+\sqrt{13}}{2}\right\}\)

Lớp 8 nên chưa học biệt thức delta

Ta có: \(x^2+x-3=0\)

\(\Leftrightarrow x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{13}{4}=0\) 

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=\dfrac{13}{4}\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{13}-1}{2}\\x=\dfrac{-1-\sqrt{13}}{2}\end{matrix}\right.\)

19 tháng 2 2023

`a)(x+6)(3x-1)=(x-6)(x+6)`

`<=>(x+6)(3x-1+6-x)=0`

`<=>(x+6)(2x+5)=0`

`<=>[(x=-6),(x=-5/2):}`

`b)(x+1)^2=(2x+3)^2`

`<=>(x+1)^2-(2x+3)^2=0`

`<=>(x+1-2x-3)(x+1+2x+3)=0`

`<=>(-x-2)(3x+4)=0`

`<=>[(x=-2),(x=-4/3):}`

19 tháng 2 2023

-x-2=0

<=>-x=2

<=>x=-2.

14 tháng 3 2021

Ta có (\(^{x^{2^{ }}^{ }+3x}\)) (\(^{x^{2^{ }}+3x+4}\))

Đặt \(x^{2^{ }^{ }}+3x\) là a ta có

a.(a+4)=-4

4a+\(a^2\) -4=0

\(^{ }\left(a-2\right)^2\)=0

Suy ra a=2

hay \(x^{2^{ }^{ }^{ }}+3x=2\)

\(x^2+3x-2=0\)

𝑥=−3±17√/2

 

 

a: \(\Leftrightarrow\dfrac{x-51}{9}-1+\dfrac{x-52}{8}-1=\dfrac{x-53}{7}-1+\dfrac{x-54}{6}-1\)

=>x-60=0

hay x=60

b: \(\Leftrightarrow\left(x-2\right)^2-3\left(x+2\right)=x-14\)

\(\Leftrightarrow x^2-4x+4-3x-6-x+14=0\)

\(\Leftrightarrow x^2-8x+12=0\)

=>(x-2)(x-6)=0

=>x=2(loại) hoặc x=6(nhận)

a: =>-3x=-12

=>x=4

b: =>3(3x+2)-3x-1=12x+10

=>9x+6-3x-1=12x+10

=>12x+10=6x+5

=>6x=-5

=>x=-5/6

c: =>x(x+1)+x(x-3)=4x

=>x^2+x+x^2-3x-4x=0

=>2x^2-6x=0

=>2x(x-3)=0

=>x=3(loại) hoặc x=0(nhận)

13 tháng 3 2023

loading...  loading...