Chứng minh: x + 2 2 x - 4 = 2 + x - 2 2 v ớ i x ≥ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: (x-1)^2-2(x-3)^2+(x-3)^2
=x^2-2x+1+x^2-6x+9-2(x^2-6x+9)
=2x^2-8x+10-2x^2+12x-18=4x-8
b: \(=x^3-3x^2+3x-1+3x^2-3x-\left(x^3+8\right)\)
=x^3-1-x^3-8
=-9
2) \(x^4-x^2+1=0\)(1)
Đặt: t=x2, khi đó:
(1)\(\Leftrightarrow t^2-t+1=0\)
\(\Leftrightarrow\left(t-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(2\right)\)
\(\Rightarrow\left(2\right)\) vô nghiệm => (1) vô nghiệm
= : Cho đơn th ứ c A= 2 xy 2 .( 1 2 22 x y x ) a)Thu g ọ n đơn th ứ c b)Tìm b ậ c c ủ a đơn th ứ c thu g ọ n c)Xác đ ị nh ph ầ n h ệ s ố ,ph ầ n bi ế n c ủ a đơn th ứ c thu g ọ n d)Tính giá tr ị c ủ a đơn th ứ c t ạ i x=2 ; y= - 1 e) Ch ứ ng minh r ằ ng A luôn nh ậ n giá tr ị dương v ớ i m ọ i x 0 và y 0 Câu 2: Tính a) 5 x 2 y - 3 x 2 y +7 x 2 y b) 1 2 32 x y z + 2 3 32 x y z - 32 3 x y z 4 c) 3 3 3 3 1 5 x y x y x y 4 2 8
1.
(2x+1)(x-2)-x(2x+3)+10
= 2x.(x-2)+1(x-2)-x(2x+3)+10
= 2x.x-2x.2+1.x-1.2-x.2x+x.3+10
= 2x2-4x+x-2-2x2+3x+10
= (2x2-2x2)+(-4x+x+3x)+(-2+10)
= 8
Vậy giá trị của biểu thức (2x+1)(x-2)-x(2x+3)+10 không phụ thuộc vào biến x
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;
Bài 1:
a) 2x(x2 - 3x + 4)
= 2x3 - 6x2 + 8x
b) (x + 2)(x - 1)
= x2 - x + 2x - 2
= x2 + x - 2
c) (4x4 - 2x3 + 6x2) : 2x
= 2x3 - x2 + 3x
Bài 2:
a) 2x2 - 6x
= 2x(x - 3)
b) 2x2 - 18
= 2(x2 - 9)
= 2(x - 3)(x + 3)
c) x3 + 3x2 + x + 3
= x2(x + 3) + (x + 3)
= (x + 3)(x2 + 1)
Bài 1 :
a) \(2x\left(x^2-3x+4\right)\)
= \(2x^3-6x^2+8x\)
b) \(\left(x+2\right)\left(x-1\right)\)
\(=x^2-x+2x-2\)
\(=x^2-x-2\)
Bài 2 :
a) \(2x^2-6x\)
\(=2x\left(x-3\right)\)
b) \(2x^2-18\)
\(=2\left(x^2-9\right)\)
\(=2\left(x-3\right)\left(x+3\right)\)
c) \(x^3+3x^2+x+3\)
\(=\left(x^3+3x^2\right)\left(x+3\right)\)
\(=x^2\left(x+3\right)\left(x+3\right)\)
\(=\left(x^2+1\right)\left(x+3\right)\)
Bài 3 :
a) \(\dfrac{5x}{x-1}+\dfrac{-5}{x-1}=\dfrac{5x+\left(-5\right)}{x-1}=\dfrac{5\left(x-1\right)}{x-1}=5\)
b) \(\dfrac{1}{x-3}+\dfrac{2}{x+3}+\dfrac{9-x}{x^2-9}\)
\(=\dfrac{1}{x-3}+\dfrac{2}{x+3}+\dfrac{9-x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{2x-6}{\left(x-3\right)\left(x+3\right)}+\dfrac{9-x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x+3+2x-6+9-x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x+6}{\left(x-3\right)\left(x+3\right)}=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\)
1/ \(a^3+b^3+ab=\left(a+b\right)\left(a^2+b^2-ab\right)+ab=a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2=\frac{1}{2}\)
2/ \(F\left(x\right)=P\left(x\right).\left(x+2\right)+10\Rightarrow F\left(-2\right)=10\)
\(F\left(x\right)=Q\left(x\right).\left(x-2\right)+24\Rightarrow F\left(2\right)=24\)
Do \(x^2-4\) bậc 2 nên đa thức dư tối đa là bậc nhất có dạng \(ax+b\)
\(F\left(x\right)=R\left(x\right).\left(x^2-4\right)+ax+b\)
Thay \(x=-2\Rightarrow F\left(-2\right)=-2a+b=10\)
Thay \(x=2\Rightarrow F\left(2\right)=2a+b=24\)
\(\Rightarrow\left\{{}\begin{matrix}-2a+b=10\\2a+b=24\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{7}{2}\\b=17\end{matrix}\right.\) \(\Rightarrow\) dư \(\frac{7}{2}x+17\)
3/Vì đa thức chia có bậc 2 nên đa thức dư có bậc 1, có dạng ax+b. Ta có :\(x^{2015}+x^{1945}+x^{1930}+x^2-x+1=Q\left(x\right).\left(x^2-1\right)+ax+b\)Thay x=1 được 4=a+b(1)
Thay x=-1 được 2=-a+b(2)
Cộng (1) và (2) được 6=2b suy ra b=3, từ đó suy ra a=1
Vậy dư là x+3
Ta có:
x + 2 2 x - 4 = 2 + x - 2 2
Vế trái bằng vế phải nên đẳng thức được chứng minh.