K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2019

a) HS tự chứng minh.

b) HS tự chứng minh.

c) Từ a, suy ra AB.AC = AD.AI  (1)

Từ b, suy ra BD.CD = AD.ID (2)

Từ (1) và (2), ta chứng minh được AD2 = AB.AC- DB.DC

7 tháng 4 2022

help meeeee

7 tháng 4 2022

mình cần trước thứ 6

11 tháng 5 2020

Câu hỏi kiểu j vậy bn ????

11 tháng 5 2020

Bạn ơi gửi câu hỏi cho đàng hoàng đấy

11 tháng 5 2020

Bạn ơi hình như thiếu đề

11 tháng 5 2020

nếu câu hỏi là như này

Cho Tam Giác ABC ( AB<AC) , đường phân giác DA .Trên tia đối của tia DA lấy điểm I sao cho góc ACI = góc BAD . Chứng minh:

a. tam giac ADB và tam giác ACI đồng dạng

b. tam giác ADB và tam giác CDI đồng dạng

c. AD^2 = AB.AC - DB.BC

mk trả lời này

a.Xét tgiac ADB và tgiac ACI có:

góc BAD = góc IAC(gt)

góc BDA= góc ICA(gt)

Vậy tgiac ADB đồng dạng với tgiac ACI(g.g)

=> góc ABD = góc AIC => góc ABD = góc DIC

b.xét tgiac ADB và tgiac CDI có:

góc ADB= góc CDI(đối đỉnh)

góc ABD= góc CID(cmt)

vậy tgiac ADB đồng dạng với tgiac CDI(g.g)

c.theo câu a tgiac ADB đồng dạng với tgiac ACI nên ta có:

AD/AC=AB/AI=> AB.AC=AD.AI(1)

theo câu b ta lại có tgiac ADB đồng dạng với tgiac CDI nên ta có:

BD/DI=AD/CD=> BD.CD=DI.AD(2)

TỪ (1) VÀ (2) ta có:

AB.AC-DB.DC=AD.AI-DI.AD=AD.(AI-DI)=AD.AD=AD2(ĐPCM)

nếu đúng đề bài thì k mk nha

a: Xét ΔBAM và ΔCAM có

AB=AC

góc BAM=góc CAM

AM chung

=>ΔBAM=ΔCAM

=>MB=MC

b: ΔABC cân tại A có AD là phân giác

nên AD vuông góc BC

Xét ΔBAM có

DA<DM

DA,DM lần lượt là hình chiếu của BA,BM trên AM

=>BA<BM

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE
=>BC=DE
b: Xét ΔABD vuông tại A có AB=AD

nên ΔABD vuông cân tại A

=>\(\widehat{ABD}=\widehat{ADB}=45^0\)

Xét ΔAEC vuông tại A có AE=AC

nên ΔAEC vuông cân tại A

=>\(\widehat{AEC}=\widehat{ACE}=45^0\)

Ta có: \(\widehat{ABD}=\widehat{AEC}\left(=45^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//CE
 

25 tháng 12 2023

Sửa đề: Trên tia đối của tia EM lấy N sao cho EN=EC

a: Xét ΔABE và ΔAME có

AB=AM

\(\widehat{BAE}=\widehat{MAE}\)

AE chung

Do đó: ΔABE=ΔAME

b: Ta có: ΔABE=ΔAME

=>EB=EM

=>E nằm trên đường trung trực của BM(1)

Ta có: AB=AM

=>A nằm trên đường trung trực của BM(2)

Từ (1) và (2) suy ra AE là đường trung trực của BM

=>AE\(\perp\)BM tại I và I là trung điểm của BM

=>IB=IM

c: Xét ΔENB và ΔECM có

EN=EC

\(\widehat{NEB}=\widehat{CEM}\)(hai góc đối đỉnh)

EB=EM

Do đó: ΔENB=ΔECM

d: Ta có: ΔENB=ΔECM

=>\(\widehat{EBN}=\widehat{EMC}\)

mà \(\widehat{EMC}+\widehat{AME}=180^0\)(hai góc kề bù)

và \(\widehat{AME}=\widehat{ABE}\)(ΔAME=ΔABE)

nên \(\widehat{ABE}+\widehat{NBE}=180^0\)

=>A,B,N thẳng hàng