( 1 - \(\frac{1}{97}\)) x ( 1 - \(\frac{1}{98}\)) x ..... x ( 1 - \(\frac{1}{1000}\)) = ?
các bạn giải cụ thể ra giùm mình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5x}{1.6}+\frac{5x}{6.11}+\frac{5x}{11.16}+\frac{5x}{16.21}=\frac{1}{25}\)
\(x\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}\right)=\frac{1}{25}\)
\(x\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}\right)=\frac{1}{25}\)
\(x\left(1-\frac{1}{21}\right)=\frac{1}{25}\)
\(\frac{20}{21}x=\frac{1}{25}\)
\(x=\frac{1}{25}:\frac{20}{21}=.....\)
\(\left(1-\frac{1}{97}\right)x\left(1-\frac{1}{98}\right)x...x\left(1-\frac{1}{1000}\right)\)
\(\frac{96}{97}\cdot x\cdot\frac{97}{98}\cdot x\cdot...\cdot x\cdot\frac{999}{1000}\)
\(\frac{96}{97}\cdot\frac{97}{98}\cdot...\cdot\frac{999}{1000}\cdot x^{903}\)
\(\frac{96}{1000}\cdot x^{903}\)
\(\frac{12}{125}\cdot x^{903}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009
}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)
\(1-\frac{1}{x+1}=\frac{2008}{2009}\)
\(\frac{x+1-1}{x+1}=\frac{2008}{2009}\)
\(\frac{x}{x+1}=\frac{2008}{2009}\)
\(2009x=2008\left(x+1\right)\)
\(2009x=2008x+2008\)
\(2009x-2008x=2008\)
\(x=2008\)
Vậy x=2008
Ta có \(\left(1-\frac{1}{97}\right)\times\left(1-\frac{1}{98}\right)\times.....\times\left(1-\frac{1}{1000}\right).\)
\(=\frac{97-1}{97}\times\frac{98-1}{98}\times.....\times\frac{1000-1}{1000}\)
\(=\frac{96}{97}\times\frac{97}{98}\times....\times\frac{999}{1000}\) (rút gọn hết )
\(=\frac{96}{1000}\)
\(=\frac{12}{125}\)
(1-1/97),(1-1/98).....(1-1/1000)
=96/97.97/98.....999/1000
=(96.97...999)/(97.98...1000)
=96/1000=12/125
Dấu . Là dấu nhân nhé
=\(\frac{96}{97}\)x\(\frac{97}{98}\)x...x\(\frac{999}{1000}\)
triệt tiêu đi ta có:
=\(\frac{96}{1000}\)=\(\frac{12}{125}\)
tick nhé!!