Cho tam giác ABC vuông ở A(AB nhỏ hơn AC),đường cao AH.Gọi D là điểm đối xứng của A qua H.Đường thẳng kẻ qua D//AB cắt BC và AC lần lượt tại M và N.Chứng minh:
a,Tứ giác ABDM là hình thoi
b,AM vuông góc với CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a) Xét\ tứ\ giác\ ABDN\,\ có:\)
\(AB//DN(N∈ đường\ thẳng\ đi\ qua\ D\ và // với\ AB)\)
\(⇒ABDN\ là\ hình\ thang\)
\(Mà\ BAN=90^o\)
\(⇒ ABDN\ là\ hình\ thang\ vuông\)
\(b)Xét\ ΔADC, có:\)
\(DN⊥AC\ (DN//AB\ mà\ AB⊥AC)\)
\(CH⊥AD\)
\( Mà\ M\ là\ giao\ điểm\ của\ DN\ và\ CH\)
\(Do\ đó:\ M\ là\ trung\ tâm\ của\ ΔACD\)
\(bài\ làm\ lộn\ lỡ\ rồi\ sai\ rồi\ đừng\ chép\ sorry\)
a) Ta có : AB//DM (gt) (1)
Xét tam giác ABH và tam giácDMH có
BHA^=DHA^(đối đỉnh)
AH=HD(A đx D qua H)
BAH^=HDM^(so le trong)
=> tam giác ABH=tam giácDMH (g-c-g)
=>AB=DM ( 2 cạnh tương ứng) (2)
Tử (1)(2) => ABDM là hbh
Vì M thuộc BC
mà AH vuông BC => AH vuông BM
Xét hbh ABDM có
AH vuông BM
=> hbh ABDM là hình thoi
a) Tự cm
b) Vì AB//DM mà ABvuoong góc với AC nên DM vuông góc với AC
Vì AH vuông góc với BC mà M thuộc BC nên CH vuông góc với AD
Xét tam giác ADC có:
DM vuông góc với AC
CM vuông góc với AD
mà DM cắt CM tại M
=> M là trực tâm của tam giác ADC
=> AM vuông góc với CD
=> đpcm
c) Xét tam giác NCm có
I là trung điểm của CM
=> IM=IN=IC
Xét tam giác IN< có
IM=IN
=> IMN cân tại I
=> IMN=INM góc
mà IMN=DMH
=> INM=DMH(3)
Xét tam giác AND có
H là trung điểm của AD
=> NH=HD=HA
tương tự tam giác NHD cân tại H
=>D=N( góc)(2)
mà HDN+DMH=90 độ(1)
Từ 1.2.3=> INM+MNH=90 độ
hay IN vuông góc với NH
đpcm
ĐỀ CHƯA RÕ TỪ SẼ CHO BÀI TỐT HƠN
=> A1ˆ=D1ˆA1^=D1^(so le trong )
* Xét △AHB và △DHM có
H1ˆ=H2ˆ(=900)H1^=H2^(=900)
AH =HD (D đối xứng với A qua H )
A1ˆ=D1ˆ(cmt)A1^=D1^(cmt)
=> △AHB = △DHM (g.c.g)
=> BH = MH (2 cạnh t/ứng )
* xét tứ giác ABDM có
AH=HD (d đối xứng với A qua H)
BH=MH (cmt)
=> ABDH là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)
mà AD ⊥BM
=> ABDM là hình thoi (hbh có 2 đường chéo vuông góc với nhau )(đpcm)
b) vì
+DN//AB (gt)
+AB ⊥AC (△ABC vuông tại A)
=> AC ⊥DN (qh từ vuông góc đến song song )
=> DN là đường cao △ ADC(1)
mà AD ⊥CH ( AH ⊥AC)
=> CH là đường cao của △ADC
từ (1) và (2) => M là trực tâm của △ADC
=> AM là đường cao
=> AM ⊥DC (đpcm)
hình tự vẽ bạn nhé!
a) ta có góc BAD=BDA (đối xứng trục )
mà góc BAD=góc ADM (DM //AB)
=> góc BDA= góc ADM,góc ADM= góc DAM ( đx trục )
=> góc BDA= góc DAM,2 góc này ở vị trí slt
=> BD//AM
tứ giác ABDM có BD//AM,DM//AB=> T/ g ABDM là hbh
hbh ABDM có 2 đg chéo AD và MB vuông góc vs nhau=> ABDM là hình thoi
b) ta có DN// AB(DM//AB),AB vuông góc AC=> DN vuông góc AC
tam giác DAC có CH và DN là 2 đg cao cắt nhau tại M=> M là trực tâm=> AM là đường cao thứ 3
=> AM vuông góc DC