Tìm tập xác định D của hàm số f ( x ) = 1 2 − x ; x ≥ 1 2 − x ; x < 1
A. D = R
B. D = ( 2 ; + ∞ )
C. D = ( - ∞ ; 2 )
D. D = R\{2}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \( - 5x + 3 \ge 0,\)tức là khi \(x \le \frac{3}{5}.\)
Vậy tập xác định của hàm số này là \(D = ( - \infty ;\frac{3}{5}]\)
b) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \(x + 3 \ne 0,\)tức là khi \(x \ne - 3\)
Vậy tập xác định của hàm số này là \(D = \mathbb{R}\backslash \left\{ { - 3} \right\}\)
a: TXĐ: \(D=R\backslash\left\{-\dfrac{1}{2}\right\}\)
b: TXĐ: \(D=R\backslash\left\{-3;1\right\}\)
c: TXĐ: \(D=\left[-\dfrac{1}{2};3\right]\)
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\) \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)
b. \(D=R\)
c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)
d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)
Chọn D
Do 1 2 không nguyên nên hàm số xác định khi và chỉ khi:
Vậy tập xác định của hàm số trên là
Đáp án D
Hàm số xác định khi:
x ≥ 1 2 − x ≠ 0 x < 1 2 − x ≥ 0 ⇔ x ≥ 1 x ≠ 2 x < 1 x ≤ 2 ⇔ x ≥ 1 x ≠ 2 x < 1
Vậy xác định của hàm số là D=R\{2}