K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

Đáp án B

29 tháng 9 2016

Theo mình:

để hàm số đồng biến, đk cần là y'=0.

a>0 và \(\Delta'< 0\)

nghịch biến thì a<0 

vì denta<0 thì hầm số cùng dấu với a

mình giải được câu a với b

câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb) 

câu d dùng viet

câu e mình chưa chắc lắm ^^

NV
22 tháng 6 2021

\(y'=-x^2+2\left(m-3\right)x+m+4\)

a.

Hàm nghịch biến trên khoảng đã cho khi và chỉ khi: với mọi \(x\in\left(-1;3\right)\) ta có:

\(f\left(x\right)=-x^2+2\left(m-3\right)x+m+4\le0\)

\(\Delta'=\left(m-3\right)^2+m+4=m^2-5m+13>0\) ; \(\forall m\)

Bài toán thỏa mãn khi:

\(\left[{}\begin{matrix}3\le x_1< x_2\\x_1< x_2\le-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}f\left(3\right)\le0\\\dfrac{x_1+x_2}{2}>3\end{matrix}\right.\\\left\{{}\begin{matrix}f\left(-1\right)\le0\\\dfrac{x_1+x_2}{2}< -1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}7m-23\le0\\m-3>3\end{matrix}\right.\\\left\{{}\begin{matrix}-m+9\le0\\m-3< -1\end{matrix}\right.\end{matrix}\right.\) 

Không tồn tại m thỏa mãn

NV
22 tháng 6 2021

b.

Hàm nghịch biến trên khoảng đã cho khi và chỉ khi:

\(\forall x\in\left(2;4\right)\) ta có:

\(-x^2+2\left(m-3\right)x+m+4\le0\)

\(\Leftrightarrow x^2+6x-4\ge m\left(2x+1\right)\)

\(\Leftrightarrow m\le\dfrac{x^2+6x-4}{2x+1}\)

\(\Leftrightarrow m\le\min\limits_{\left[2;4\right]}\dfrac{x^2+6x-4}{2x+1}\)

Xét hàm \(f\left(x\right)=\dfrac{x^2+6x-4}{2x+1}\) trên \(\left[2;4\right]\)

\(f'\left(x\right)=\dfrac{x^2+x+7}{2\left(2x+1\right)^2}>0\) ; \(\forall x\Rightarrow f\left(x\right)\) đồng biến

\(\Rightarrow m\le f\left(2\right)=\dfrac{12}{5}\)

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:
a. Đề không đầy đủ. Bạn xem lại

b. Để hàm (1) nghịch biến thì: $m+1<0\Leftrightarrow m<-1$

c. Với $m=2$ thì hàm (1) là: $y=3x-2$

PT hoành độ giao điểm của $y=3x-2$ và $y=x-1$ là:

$3x-2=x-1$

$\Leftrightarrow 2x=1$

$\Leftrightarrow x=\frac{1}{2}$

$y=x-1=\frac{1}{2}-1=\frac{-1}{2}$

Vậy giao điểm của $y=3x-2$ và $y=x-1$ là: $(\frac{1}{2}; \frac{-1}{2})$

a: Thay x=1 và y=4 vào (1), ta được:

\(m\cdot1+1=4\)

=>m+1=4

=>m=3

Thay m=3 vào y=mx+1, ta được:

\(y=3\cdot x+1=3x+1\)

Vì a=3>0

nên hàm số y=3x+1 đồng biến trên R

b: Để đồ thị hàm số (1) song song với (d) thì

\(\left\{{}\begin{matrix}m^2=m\\m+1\ne1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\m\ne0\end{matrix}\right.\)

=>m-1=0

=>m=1

AH
Akai Haruma
Giáo viên
9 tháng 12 2023

Lời giải:

a. Để hàm đồng biến thì $m-1>0\Leftrightarrow m>1$

Để hàm nghịch biến thì $m-1<0\Leftrightarrow m< 1$

b. Để đths đi qua điểm $A(-1;1)$ thì:

$y_A=(m-1)x_A+m$

$\Leftrightarrow 1=(m-1)(-1)+m=1-m+m$

$\Leftrightarrow 1=1$ (luôn đúng)

Vậy đths luôn đi qua điểm A với mọi $m$

c.

$x-2y=1\Rightarrow y=\frac{1}{2}x-\frac{1}{2}$

Để đths đã cho song song với đths $y=\frac{1}{2}x-\frac{1}{2}$ thì:

\(\left\{\begin{matrix} m-1=\frac{1}{2}\\ m\neq \frac{-1}{2}\end{matrix}\right.\Leftrightarrow m=\frac{3}{2}\)

d,

ĐTHS cắt trục hoành tại điểm có hoành độ $\frac{2-\sqrt{3}}{2}$, tức là ĐTHS đi qua điểm $(\frac{2-\sqrt{3}}{2}; 0)$

$\Rightarrow 0=(m-1).\frac{2-\sqrt{3}}{2}+m$

$\Leftrightarrow m=\frac{2-\sqrt{3}}{4-\sqrt{3}}$

NV
23 tháng 12 2022

Hàm nghịch biến trên R khi và chỉ khi:

\(m-2< 0\)

\(\Rightarrow m< 2\)

23 tháng 12 2022

A.2

B.m<2

C.m>2

D.m=0

NV
20 tháng 6 2021

\(y'=x^2-2\left(m-2\right)x+m^2-3m+2\)

a. Hàm đồng biến trên khoảng đã cho khi và chỉ khi:

\(y'\ge0\) ; \(\forall x>3\)

\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x>3\)

Ta có: \(\Delta'=\left(m-2\right)^2-\left(m^2-3m+2\right)=-m+2\)

TH1: \(\Delta'\le0\Leftrightarrow m\ge2\)

TH2: \(\left\{{}\begin{matrix}\Delta'>0\\x_1< x_2\le2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-3m+2-4\left(m-2\right)+4\ge0\\2\left(m-2\right)< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-7m+4\ge0\\m< 4\end{matrix}\right.\) \(\Leftrightarrow m< 2\)

Kết hợp lại ta được hàm đồng biến trên \(\left(2;+\infty\right)\) với mọi m

NV
20 tháng 6 2021

b.

Hàm số đồng biến trên khoảng đã cho khi và chỉ khi:

\(y'\ge0\) ; \(\forall x< 0\)

\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x< 0\)

TH1: \(\Delta'=-m+2\le0\Leftrightarrow m\ge2\)

TH2: \(\left\{{}\begin{matrix}\Delta'>0\\0\le x_1< x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1+x_2=2\left(m-2\right)>0\\x_1x_2=m^2-3m+2\ge0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn

Kết hợp lại ta được: \(m\ge2\)