Tập hợp các số nguyên để biểu thức đạt giá trị nhỏ nhất là {}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Nếu $x>1$ thì:
$A=x+2+x-1=2x+1> 2.1+1=3$
Nếu $-2\leq x\leq 1$ thì:
$A=x+2+1-x=3$
Nếu $x< -2$ thì:
$A=-(x+2)+1-x=-1-2x> -1-2(-2)=3$
Từ 3 TH trên suy ra $A_{\min}=3$ khi $-2\leq x\leq 1$
Mà $x$ nguyên nên $x\in \left\{-2; -1; 0; 1\right\}$ (đây chính là tập hợp các số nguyên $x$ thỏa mãn đề)
\(D=\left|2x+2,5\right|+\left|2x-3\right|=\left|2x+2,5\right|+\left|3-2x\right|\)
Áp dụng bất đẳng thức \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\) với \(xy\ge0\)
=>\(D=\left|2x+2,5\right|+\left|3-2x\right|\ge\left|2x+2,5+3-2x\right|=\left|5,5\right|=5,5\)
với \(\left(2x+2,5\right)\left(3-2x\right)\ge0\)
=>Dmin=5,5 khi \(\left(2x+2,5\right)\left(3-2x\right)\ge0\)
Lập bảng xét dấu:
x | -1,25 1,5 |
2x+2,5 | - 0 + | + |
3-2x | + | + 0 - |
(2x+2,5)(3-2x) | - 0 + 0 - |
Dễ thấy \(-1,25\le x< 1,5\) thỏa mãn \(\left(2x+2,5\right)\left(3-2x\right)\ge0\)
x nguyên => \(x\in\left\{-1;0;1\right\}\)
Vậy Dmin=5,5 khi \(x\in\left\{-1;0;1\right\}\)
Có: \(\hept{\begin{cases}\left|2x+2,5\right|\ge2x+2,5\\\left|2x-3\right|\ge3-2x\end{cases}}\) với mọi x
=> \(D=\left|2x+2,5\right|+\left|2x-3\right|\ge\left(2x+2,5\right)+\left(3-2x\right)\)
hay \(D\ge5,5\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}2x+2,5\ge0\\2x-3\le0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x\ge-2,5\\2x\le3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\ge\frac{-5}{4}\\x\le\frac{3}{2}\end{cases}}\)\(\Rightarrow\frac{-5}{4}\le x\le\frac{3}{2}\)
Mà x nguyên => \(x\in\left\{-1;1;0\right\}\)
Vậy...
Đề hiển thị lỗi rồi. Bạn xem lại nhé.