Giá trị của m để hệ phương trình m x - y = 1 x + ( m + 2 ) y = 2 vô nghiệm là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với m = -2
=> hpt trở thành: \(\left\{{}\begin{matrix}x+y=2\\-2x-y=-2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=2-x\\-x=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Vậy S = {0; 2}
b) Ta có: \(\left\{{}\begin{matrix}x+y=2\left(1\right)\\mx-y=m\left(2\right)\end{matrix}\right.\)
=> x + mx = 2 + m
<=> x(m + 1) = 2 + m
Để hpt có nghiệm duy nhất <=> \(m\ne-1\)
<=> x = \(\dfrac{m+2}{m+1}\) thay vào pt (1)
=> y = \(2-\dfrac{m+2}{m+1}=\dfrac{2m+2-m-2}{m+1}=\dfrac{m}{m+1}\)
Mà 3x - y = -10
=> \(3\cdot\dfrac{m+2}{m+1}-\dfrac{m}{m+1}=-10\)
<=> \(\dfrac{2m+6}{m+1}=-10\) <=> m + 3 = -5(m + 1)
<=> 6m = -8
<=> m = -4/3
c) Để hpt có nghiệm <=> m \(\ne\)-1
Do x;y \(\in\) Z <=> \(\left\{{}\begin{matrix}\dfrac{m+2}{m+1}\in Z\\\dfrac{m}{m+1}\in Z\end{matrix}\right.\)
Ta có: \(x=\dfrac{m+2}{m+1}=1+\dfrac{1}{m+1}\)
Để x nguyên <=> 1 \(⋮\)m + 1
<=> m +1 \(\in\)Ư(1) = {1; -1}
<=> m \(\in\) {0; -2}
Thay vào y :
với m = 0 => y = \(\dfrac{0}{0+1}=0\)(tm)
m = -2 => y = \(\dfrac{-2}{-2+1}=2\)(tm)
Vậy ....
Thao m =3 và HPT ta có:
\(\left\{{}\begin{matrix}\left(3-1\right)x+y=3\\x+\left(3-1\right)y=2\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x+y=3\\x+2y=2\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}4x+2y=6\\x+2y=2\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}4x+2y=6\\3x=4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy với m=3 thì HPT có nghiệm (x;y) = (\(\dfrac{4}{3};\dfrac{1}{3}\))
a) Thay m=3 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}2x+y=3\\x+2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=3\\2x+4y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-1\\2x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\2x=3-y=3-\dfrac{1}{3}=\dfrac{8}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Ta có
x + 1 4 − y 2 = x + y + 1 x − 2 2 + y − 1 3 = x + y − 1
⇔ x + 1 − 2 y = 4 x + 4 y + 4 3 x − 6 + 2 y − 2 = 6 x + 6 y − 6
⇔ 3 x + 6 y = − 3 3 x + 4 y = − 2 ⇔ y = − 1 2 x = 0
Thay x = 0; y = − 1 2 vào phương trình (m + 2)x + 7my = m – 225 ta được:
(m + 2).0 + 7m − 1 2 = m – 225 ⇔ 9 2 m = 225 ⇔ m = 50
Đáp án: C
a, \(\left\{{}\begin{matrix}m^2x-my=2m\\x+my=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+1\right)x=2m+1\\y=\dfrac{1-x}{m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m^2+1}\\y=\dfrac{1-\dfrac{2m+1}{m^2+1}}{m}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m^2+1}\\y=\dfrac{\dfrac{m^2+1-2m-1}{m^2+1}}{m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m^2+1}\\y=\dfrac{\dfrac{m^2-2m}{m^2+1}}{m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m^2}\\y=\dfrac{m^2-2m}{m^2+1}:m=\dfrac{m\left(m-2\right)}{m\left(m^2+1\right)}=\dfrac{m-2}{m^2+1}\end{matrix}\right.\)
b, Để hpt có nghiệm duy nhất khi \(\dfrac{m}{1}\ne-\dfrac{1}{m}\Leftrightarrow m^2\ne-1\left(luondung\right)\)
\(\dfrac{2m+1}{m^2}+\dfrac{m-2}{m^2+1}=-1\)
\(\Leftrightarrow\left(2m+1\right)\left(m^2+1\right)+m^2\left(m-2\right)=-m^2\left(m^2+1\right)\)
\(\Leftrightarrow2m^3+2m+m^2+1+m^3-2m^2=-m^4-m^2\)
\(\Leftrightarrow3m^3-m^2+2m+1=-m^4-m^2\)
\(\Leftrightarrow m^4+3m^3+2m+1=0\)
bạn tự giải nhé
a, Thay m = 2 ta được \(\left\{{}\begin{matrix}2x+y=1\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
b, \(\Leftrightarrow\left\{{}\begin{matrix}3x=3m-3\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m-1\\y=m-3\end{matrix}\right.\)
Ta có : \(x^2+y^2=m^2-2m+1+m^2-6m+9=2m^2-8m+10\)
\(=2\left(m^2-4m+4-4\right)+10=2\left(m-2\right)^2+2\ge2\forall m\)
Dấu''='' xảy ra khi m =2
Vậy ...
Đáp án: D